⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fquadtree.cpp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 CPP
📖 第 1 页 / 共 2 页
字号:
// -*- Mode : c++ -*-//// SUMMARY  :      // USAGE    :        // ORG      : // AUTHOR   : Frederic Hecht// E-MAIL   : hecht@ann.jussieu.fr///*  This file is part of Freefem++  Freefem++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.  Freefem++  is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more details.  You should have received a copy of the GNU Lesser General Public License along with Freefem++; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA */// E-MAIL :   Frederic.Hecht@Inria.fr   //// ORIG-DATE:     Dec 97#include <cmath>#include <cstdlib>#include "error.hpp"#include <iostream>#include <limits.h>//#include <stdio.h>#include <string.h>#include <cstdlib>using namespace std;#include "RNM.hpp"#include "rgraph.hpp"#include "fem.hpp"using namespace Fem2D;#ifndef NEWQUADTREE//  new version ----------//  ----------------------#ifdef DRAWINGvoid FQuadTree::PlotQuad(I2 pp,long hb){		  IMoveTo(pp.x,pp.y);		  ILineTo(pp.x+hb,pp.y);		  ILineTo(pp.x+hb,pp.y+hb);		  ILineTo(pp.x   ,pp.y+hb);		  ILineTo(pp.x   ,pp.y);}void FQuadTree::PlotX(I2 p,long hb){	  IMoveTo(p.x,     p.y);  ILineTo(p.x+hb/2,p.y+hb/2);  IMoveTo(p.x+hb/2,p.y);  ILineTo(p.x     ,p.y+hb/2);}void  FQuadTree::Draw(){  QuadTreeBox * pb[ MaxDeep ];  int  pi[ MaxDeep  ];  I2 pp[MaxDeep];  //long ii[  MaxDeep ], jj [ MaxDeep];  int l=0; // level  QuadTreeBox * b;  IntQuad hb =  MaxISize;  if (!root) return ;  // long kkk =0;  pb[0]=  root;  pi[0]= root->n>0 ?(int)  root->n : 4  ;;  pp[0].x=pp[0].y=0;//ii[0]=jj[0]=0;  do{        b= pb[l];    while (pi[l]--)      { 	if (b->n>0) // Vertex QuadTreeBox none empty	    { // 	      for (int k=0;k<b->n;k++)		{		  DrawMark(*b->v[k],0.002);		}	      break;	    }	else // Pointer QuadTreeBox 	    { 	      int lll = pi[l];	      QuadTreeBox *b0=b;	      	      if ((b=b->b[lll])) 		{ 		  hb >>=1 ; // div by 2		  I2 ppp(pp[l],lll,hb);		  		  pb[++l]=  b;		  pi[l]= 4;		  pp[l]=ppp;                  PlotQuad(pp[l],hb);		}	      else		{		  I2 ppp(pp[l],lll,hb/2);		 		  b=b0;                  PlotX(ppp,hb/2);		}	    }      }    hb <<= 1; // mul by 2   } while (l--);}#endifVertex *  FQuadTree::NearestVertex(long xi,long yj){  QuadTreeBox * pb[ MaxDeep ];  int  pi[ MaxDeep  ];  I2 pp[  MaxDeep ];  int l=0; // level  QuadTreeBox * b;  IntQuad  h=MaxISize,h0;  IntQuad hb =  MaxISize;  I2   p0(0,0);  I2  plus( xi<MaxISize?(xi<0?0:xi):MaxISize-1,yj<MaxISize?(yj<0?0:yj):MaxISize-1);    Vertex *vn=0;    // init for optimisation ---  b = root;  long  n0;  if (!root->n)    return vn; // empty tree     while( (n0 = b->n) < 0)     {      // search the non empty       // QuadTreeBox containing  the point (i,j)      long hb2 = hb >> 1 ;       int k = plus.Case(hb2);//(iplus,jplus,hb2);// QuadTreeBox number of size hb2 contening i;j      QuadTreeBox * b0= b->b[k];      if ( ( b0 == 0) || (b0->n == 0) ) 	break; // null box or empty   => break 	          NbQuadTreeBoxSearch++;      b=b0;      p0.Add(k,hb2);	      hb = hb2;     }      if ( n0 > 0)     {        for( int k=0;k<n0;k++)	{	  I2 i2 =  R2ToI2(b->v[k]);	  h0 = I2(i2,plus).norm();//NORM(iplus,i2.x,jplus,i2.y);	  if (h0 <h) {	    h = h0;	    vn = b->v[k];}	  NbVerticesSearch++;	}      return vn;    }  // general case -----  pb[0]= b;  pi[0]=b->n>0 ?(int)  b->n : 4  ;  pp[0]=p0;  h=hb;  do {        b= pb[l];    while (pi[l]--)      { 	              int k = pi[l];		if (b->n>0) // Vertex QuadTreeBox none empty	  { 	    NbVerticesSearch++;	    I2 i2 =  R2ToI2(b->v[k]);	    h0 = I2(i2,plus).norm();//  NORM(iplus,i2.x,jplus,i2.y);	    if (h0 <h) 	      {		h = h0;		vn = b->v[k];	      }	  }	else // Pointer QuadTreeBox 	  { 	    QuadTreeBox *b0=b;	    NbQuadTreeBoxSearch++;	    if ((b=b->b[k]))	      {		hb >>=1 ; // div by 2		I2 ppp(pp[l],k,hb);				if  ( ppp.interseg(plus,hb,h) )//(INTER_SEG(iii,iii+hb,iplus-h,iplus+h) && INTER_SEG(jjj,jjj+hb,jplus-h,jplus+h)) 		  {		    pb[++l]=  b;		    pi[l]= b->n>0 ?(int)  b->n : 4  ;		    pp[l]=ppp;		    		  }		else		  b=b0, hb <<=1 ;	      }	    else	      b=b0;	  }      }    hb <<= 1; // mul by 2   } while (l--);    return vn;}Vertex *  FQuadTree::ToClose(const R2 & v,R seuil,long hx,long hy){  I2 H(hx,hy);  const I2 p(XtoI(v.x),YtoJ(v.y));  const R2 X(v);  R seuil2 = seuil*seuil; // const Metric  Mx(v.m);  QuadTreeBox * pb[ MaxDeep ];  int  pi[ MaxDeep  ];    I2 pp[  MaxDeep ];//  long ii[  MaxDeep ], jj [ MaxDeep];  int l=0; // level  QuadTreeBox * b;  long h=MaxISize;  long hb =  MaxISize;  //long i0=0,j0=0;  I2 p0(0,0);  //  Vertex *vn=0;    if (!root->n)    return 0; // empty tree     // general case -----  pb[0]= root;  pi[0]=  root->n>0 ?(int)  root->n : 4 ;  pp[0]=p0;  h=hb;  do {        b= pb[l];    while (pi[l]--)      { 	              int k = pi[l];		if (b->n>0) // Vertex QuadTreeBox none empty	  { 	    NbVerticesSearch++;	    Vertex & V(*b->v[k]);	    I2 i2 =  R2ToI2(V);	    if ( I2(i2,p).less(H) )	      {		R2 XY(X,V);		R dd;	        if( (dd= (XY,XY) ) < seuil2 ) // LengthInterpole(Mx(XY), b->v[k]->m(XY)))  < seuil )	          {// cout << dd << " " << XY << " ";		    return &V; }	      }	  }	else // Pointer QuadTreeBox 	  { 	    QuadTreeBox *b0=b;	    NbQuadTreeBoxSearch++;	    if ((b=b->b[k])) 	      {		hb >>=1 ; // div by 2	        I2 ppp(pp[l],k,hb);		if (ppp.interseg(p,hb,H))		  {		    pb[++l]=  b;		    pi[l]= b->n>0 ?(int)  b->n : 4  ;		    pp[l]=ppp;		    		  }		else		  b=b0, hb <<=1 ;	      }	    else	      b=b0;	  }      }    hb <<= 1; // mul by 2   } while (l--);    return 0;}void  FQuadTree::Add( Vertex & w){  QuadTreeBox ** pb , *b;  I2 p(XtoI(w.x),YtoJ(w.y));  long l=MaxISize;  pb = &root;  //    cout << pb << " " << &root << endl;  while( (b=*pb) && (b->n<0))    {       b->n--;      l >>= 1;      pb = &b->b[p.Case(l)];    }  if  (b) {          if (b->n > 3 &&  b->v[3] == &w) return;    if (b->n > 2 &&  b->v[2] == &w) return;    if (b->n > 1 &&  b->v[1] == &w) return;    if (b->n > 0 &&  b->v[0] == &w) return;  }  throwassert(l);  while ((b= *pb) && (b->n == 4)) // the QuadTreeBox is full    {       Vertex *v4[4]; // copy of the QuadTreeBox vertices            v4[0]= b->v[0];      v4[1]= b->v[1];      v4[2]= b->v[2];      v4[3]= b->v[3];      b->n = -b->n; // mark is pointer QuadTreeBox      b->b[0]=b->b[1]=b->b[2]=b->b[3]=0; // set empty QuadTreeBox ptr      l >>= 1;    // div the size by 2      for (int k=0;k<4;k++) // for the 4 vertices find the sub QuadTreeBox ij	{ 	  int ij;	  QuadTreeBox * bb =  b->b[ij=R2ToI2(v4[k]).Case(l)];	  if (!bb) 	    bb=b->b[ij]=NewQuadTreeBox(); // alloc the QuadTreeBox 	  //    cout << bb << " " << k << " "  << ij <<  endl;	  bb->v[bb->n++] = v4[k];	}      pb = &b->b[p.Case(l)];    }  if (!(b = *pb))    b=*pb= NewQuadTreeBox(); //  alloc the QuadTreeBox   //   cout << b << " " << b->n << endl;  b->v[b->n++]=&w; // we add the vertex   NbVertices++;    }FQuadTree::FQuadTree(Vertex * v,R2 Pmin,R2 Pmax,long nbv)  :  th(0),  lenStorageQuadTreeBox(Max(abs(nbv),1000L)),  NbQuadTreeBox(0),  NbVertices(0),  NbQuadTreeBoxSearch(0),  NbVerticesSearch(0),  cMin(Pmin-(Pmax-Pmin)/2),  cMax(Pmax+(Pmax-Pmin)/2),  coef( MaxISize/Norme_infty(cMax-cMin))  {   sb =new StorageQuadTreeBox(lenStorageQuadTreeBox);  root=NewQuadTreeBox();  for (long i=0;i<nbv;i++)     Add(v[i]);#ifdef DRAWING1  Draw();#endif}FQuadTree::FQuadTree(Mesh * t,R2 Pmin,R2 Pmax,long nbv) :  lenStorageQuadTreeBox(t->nv/8+100),  th(t),  NbQuadTreeBoxSearch(0),  NbVerticesSearch(0),  NbQuadTreeBox(0),  NbVertices(0),  cMin(Pmin-(Pmax-Pmin)/2),  cMax(Pmax+(Pmax-Pmin)/2),  coef( MaxISize/Norme_infty(cMax-cMin))  {   if (nbv == -1) nbv = t->nv;  sb =new StorageQuadTreeBox(lenStorageQuadTreeBox);  root=NewQuadTreeBox();//  throwassert( MaxISize > MaxICoor);  if (t)  for (long i=0;i<nbv;i++)     Add(t->vertices[i]);#ifdef DRAWING1  Draw();#endif}FQuadTree::FQuadTree(Mesh* t,long tnv,R2 Pmin,R2 Pmax,long nbv) :  lenStorageQuadTreeBox(tnv/8+100),  th(t),  NbQuadTreeBoxSearch(0),  NbVerticesSearch(0),  NbQuadTreeBox(0),  NbVertices(0),  cMin(Pmin-(Pmax-Pmin)/2),  cMax(Pmax+(Pmax-Pmin)/2),  coef( MaxISize/Norme_infty(cMax-cMin))  {   if (nbv == -1) nbv = tnv;  sb =new StorageQuadTreeBox(lenStorageQuadTreeBox);  root=NewQuadTreeBox();//  throwassert( MaxISize > MaxICoor);  if (t)  for (long i=0;i<nbv;i++)     Add(t->vertices[i]);#ifdef DRAWING1  Draw();#endif}FQuadTree::FQuadTree() :   lenStorageQuadTreeBox(100),  th(0),  NbQuadTreeBoxSearch(0),  NbVerticesSearch(0),  NbQuadTreeBox(0),  NbVertices(0),  cMin(0,0),cMax(0,0),coef(0){  sb =new StorageQuadTreeBox(lenStorageQuadTreeBox);  root=NewQuadTreeBox();}FQuadTree::StorageQuadTreeBox::StorageQuadTreeBox(long ll,StorageQuadTreeBox *nn){  len = ll;  n = nn;  b = new QuadTreeBox[ll];  for (int i = 0; i <ll;i++)    b[i].n =0,b[i].b[0]=b[i].b[1]=b[i].b[2]=b[i].b[3]=0;  bc =b;  be = b +ll;  throwassert(b);} FQuadTree::StorageQuadTreeBox::~StorageQuadTreeBox()    { //cout <<  "~StorageQuadTreeBox " << this << " n " << n << " b " << b << endl;      if(n) delete n;      delete [] b;    }FQuadTree::~FQuadTree(){  delete sb; }ostream& operator <<(ostream& f, const  FQuadTree & qt){   f << " the quadtree "  << endl;  f << " NbQuadTreeBox = " << qt.NbQuadTreeBox     << " Nb Vertices = " <<  qt.NbVertices << endl;  f << " NbQuadTreeBoxSearch " << qt.NbQuadTreeBoxSearch      << " NbVerticesSearch " << qt.NbVerticesSearch << endl;  f << " SizeOf QuadTree" << qt.SizeOf() << endl;  //     return  dump(f,*qt.root);  return  f;}Vertex *  FQuadTree::NearestVertexWithNormal(const R2 &P)//(long xi,long yj){  long xi(XtoI(P.x)),yj(YtoJ(P.y));  QuadTreeBox * pb[ MaxDeep ];  int  pi[ MaxDeep  ];  //long ii[  MaxDeep ], jj [ MaxDeep];  I2 pp[ MaxDeep];  int l; // level  QuadTreeBox * b;  IntQuad  h=MaxISize,h0;  IntQuad hb =  MaxISize;  I2   p0(0,0);  I2  plus( xi<MaxISize?(xi<0?0:xi):MaxISize-1,yj<MaxISize?(yj<0?0:yj):MaxISize-1);    Vertex *vn=0; // Vertex *vc;  // the current vertex    // init for optimisation ---  b = root;  long  n0;  if (!root->n)    return vn; // empty tree     while( (n0 = b->n) < 0)     {      // search the non empty       // QuadTreeBox containing  the point (i,j)      long hb2 = hb >> 1 ;      int k = plus.Case(hb2);//(iplus,jplus,hb2);// QuadTreeBox number of size hb2 contening i;j      QuadTreeBox * b0= b->b[k];      if ( ( b0 == 0) || (b0->n == 0) ) 	break; // null box or empty   => break 	          NbQuadTreeBoxSearch++;      b=b0;	      p0.Add(k,hb2);	      hb = hb2;     }      if ( n0 > 0)     {        for(int k=0;k<n0;k++)	{	  Vertex * v=b->v[k];	  if (v->ninside(P)) {	   I2 i2 =  R2ToI2(v);	  //   try if is in the right sens -- 	   h0 = I2(i2,plus).norm();// h0 = NORM(iplus,i2.x,jplus,i2.y);	   if (h0 <h) {	    h = h0;	    vn = v;}	   NbVerticesSearch++;}	}	if (vn) return vn;     }  // general case -----  // INITIALISATION OF THE STACK   l =0; // level   pb[0]= b;  pi[0]= b->n>0 ?(int)  b->n : 4  ;  pp[0]=p0;  h=hb;  L1:   do {   // walk on the tree      b= pb[l];    while (pi[l]--) // loop on 4 element of the box      { 	             int k = pi[l];		if (b->n>0) // Vertex QuadTreeBox none empty	  {        Vertex * v=b->v[k];	   if (v->ninside(P) ) {	    	     NbVerticesSearch++;	     I2 i2 =  R2ToI2(v);	     // if good sens when try -- 	     h0 = h0 = I2(i2,plus).norm();//  NORM(iplus,i2.x,jplus,i2.y);	     if (h0 <h) 	      {		   h = h0;		   vn =v;	       }}	  }	else // Pointer QuadTreeBox 	  { 	    QuadTreeBox *b0=b;	    NbQuadTreeBoxSearch++;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -