⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fespacen.hpp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 HPP
📖 第 1 页 / 共 2 页
字号:
      t[i]=0;    int k=0,i0=2*n;    for(int i=0;i<n;i++)      if ( data[i]==on)	{ int node= data[i+i0];	  //  cout << " node " << node << endl;	  assert(node < nmax);	  if( ! t[node] )	    t[node] = 1,++k;	}         //     cout << " on " << on << " k = " << k << endl;    return k;  }        } ;   template<class mesh>  struct DataFE  {    static GTypeOfFE<mesh> & P0;     static GTypeOfFE<mesh> & P1;     static GTypeOfFE<mesh> & P2;   };     template<class MMesh>  class GbaseFElement  {  public:    typedef MMesh  Mesh;    typedef GFESpace<Mesh>  FESpace;    typedef typename Mesh::Element Element;    typedef  Element E;    typedef typename E::Rd Rd;    typedef typename E::RdHat RdHat;    typedef Fem2D::GQuadratureFormular<RdHat>  QF;      const GFESpace<Mesh> &Vh;    const Element &T;  const GTypeOfFE<Mesh> * tfe;   const int N;  const int number;    GbaseFElement(const GFESpace<Mesh> &aVh, int k) ;  GbaseFElement(const   GbaseFElement & K,  const GTypeOfFE<Mesh> & atfe) ;  R EdgeOrientation(int i) const {return T.EdgeOrientation(i);}  };template<class Mesh>class GFElement : public GbaseFElement<Mesh> {public:      typedef typename Mesh::Element Element;  typedef  Element E;  typedef typename E::Rd Rd;  typedef typename E::RdHat RdHat;  typedef Fem2D::GQuadratureFormular<RdHat>  QF;      friend class GFESpace<Mesh>;  const int *p;  const int nb;    GFElement(const GFESpace<Mesh> * VVh,int k) ;    int NbOfNodes()const {return nb;}  int  operator[](int i) const ;//{ return  p ? p+i :  ((&T[i])-Vh.Th.vertices);}  N\u00c9 du noeud   int  NbDoF(int i) const ;  // number of DF   int  operator()(int i,int df) const ;// { N\u00c9 du DoF du noeud i de df local df   int  operator()(int df) const { return operator()(NodeOfDF(df),DFOfNode(df));}  // void Draw(const KN_<R> & U, const  KN_<R> & VIso,int j=0) const ;    //void Drawfill(const KN_<R> & U, const  KN_<R> & VIso,int j=0,double rapz=1) const ;    //void Draw(const RN_& U,const RN_& V, const  KN_<R> & Viso,R coef,int i0,int i1) const;  //Rd   MinMax(const RN_& U,const RN_& V,int i0,int i1) const  ;  //Rd   MinMax(const RN_& U,int i0) const  ;  void BF(const Rd & P,RNMK_ & val) const;// { tfe->FB(Vh.Th,T,P,val);}  void BF(const What_d whatd, const Rd & P,RNMK_ & val) const;// { tfe->FB(Vh.Th,T,P,val);}    // add april 08   begin end number for df of the componante ic   int dfcbegin(int ic) const { return this->tfe->begin_dfcomp[ic];}  int dfcend(int ic) const { return this->tfe->end_dfcomp[ic];}  // the fist and last composant of a sub finite element  //  int firstcomp(int isfe) const {return this->tfe->first_comp[isfe];}  // int lastcomp(int isfe)  const {return this->tfe->last_comp[isfe];}  int subFE(int df)       const {return this->tfe->fromASubFE[df] ;}  template<class RR>  KN_<RR> & Pi_h(KNM_<RR> vpt,KN_<RR> & vdf,InterpolationMatrix<RdHat> &M)    const   {     // compute  the interpolation      // in : vpt  value of componant j at point p : vpt(p,j)     // out: vdf  value du the degre of freedom    vdf=RR();        if(M.k != this->number)       M.set( this->number);         for (int k=0;k<M.ncoef;++k)      vdf[M.dofe[k]] += M.coef[k]*vpt(M.p[k],M.comp[k]);            	        return  vdf;       }      int NbDoF() const { return this->tfe->NbDoF;}  int DFOnWhat(int i) const { return this->tfe->DFOnWhat[i];}  int FromDF(int i) const { return this->tfe->fromDF[i];}  int FromFE(int i) const { return this->tfe->fromFE[i];}    // df is the df in element   int NodeOfDF(int df) const { return this->tfe->NodeOfDF[df];} // a node  int FromASubFE(int i) const { return this->tfe->fromASubFE[i];}  int FromASubDF(int i) const { return this->tfe->fromASubDF[i];}  int DFOfNode(int df) const { return this->tfe->DFOfNode[df];} // the df number on the node     R operator()(const Rd & PHat,const KN_<R> & u,int i,int op)  const ;  complex<R> operator()(const RdHat & PHat,const KN_<complex<R> > & u,int i,int op)  const ;    // GFElementGlobalToLocal operator()(const KN_<R> & u ) const { return GFElementGlobalToLocal(*this,u);}private:  int nbsubdivision() const { return this->tfe->nbsubdivision;} // for draw };template<class MMesh>     class BuildTFE { protected:	GTypeOfFE<MMesh> const * const tfe;    };template<class MMesh>struct GFESpacePtrTFE {    GTypeOfFE<MMesh> const * const ptrTFE;    GFESpacePtrTFE(GTypeOfFE<MMesh> const * const pptrTFE=0) : ptrTFE(pptrTFE) {}    virtual  ~GFESpacePtrTFE() { if(ptrTFE) delete ptrTFE;}};    template<class MMesh> class GFESpace :  public RefCounter,protected GFESpacePtrTFE<MMesh>,  public DataFENodeDF, public UniqueffId  {public:  typedef MMesh Mesh;  typedef GFElement<Mesh> FElement;  typedef typename Mesh::Element  Element;  typedef typename Mesh::BorderElement  BorderElement;  typedef typename Mesh::Rd  Rd;  typedef GTypeOfFE<Mesh> TypeOfFE;  typedef GQuadratureFormular<typename Element::RdHat> QFElement;  typedef GQuadratureFormular<typename BorderElement::RdHat>  QFBorderElement;  const Mesh &Th;  KN<const GTypeOfFE<Mesh> *>  TFE; private:  public:  CountPointer<const Mesh> cmesh;  const int N; // dim espace d'arrive  const int Nproduit; // dim de l'espace produit generalement 1  const int nb_sub_fem; // nb de sous elements finis tensorise (independe au niveau des composantes)  int const* const dim_which_sub_fem;// donne les dependant des composantes liee a un meme sous element fini  const int   maxNbPtforInterpolation;    const int   maxNbcoefforInterpolation;    //   exemple si N=5,    // dim_which_sub_fem[0]=0;  // dim_which_sub_fem[1] =1;  // dim_which_sub_fem[2]= 2  // dim_which_sub_fem[3] =2   // dim_which_sub_fem[4] =3  //  =>  //  le  sous  elements fini 0 est lie a la composante 0   //  le  sous  elements fini 1 est lie a la composante 1   //  le  sous  elements fini 2 est lie aux composantes 2,3   //  le  sous  elements fini 3 est lie a la composante 4   //  donc pour les CL. les composante 2 et 3 sont lie car elle sont utiliser pour definir un  //  meme degre de libert\u00e9.    //  par defaut P1                      GFESpace(const Mesh & TTh,const GTypeOfFE<Mesh> & tfe=DataFE<Mesh>::P1)    :    GFESpacePtrTFE<MMesh>(0),    DataFENodeDF(TTh.BuildDFNumbering(tfe.ndfonVertex,tfe.ndfonEdge,tfe.ndfonFace,tfe.ndfonVolume)),    Th(TTh),    TFE(1,0,&tfe),     cmesh(TTh),    N(TFE[0]->N),    Nproduit(TFE[0]->N),    nb_sub_fem(TFE[0]->nb_sub_fem),    dim_which_sub_fem(TFE[0]->dim_which_sub_fem),    maxNbPtforInterpolation(TFE[0]->NbPtforInterpolation),    maxNbcoefforInterpolation(TFE[0]->NbcoefforInterpolation)        {	if(verbosity) cout << "  -- FESpace: Nb of Nodes " << NbOfNodes 	    << " Nb of DoF " << NbOfDF << endl;    }      GFESpace(const GFESpace & Vh,int kk);  GFESpace(const GFESpace ** Vh,int kk);      int FirstDFOfNode(int i) const {return FirstDfOfNodeData ? FirstDfOfNodeData[i] : i*Nproduit;}  int LastDFOfNode(int i)  const {return FirstDfOfNodeData ? FirstDfOfNodeData[i+1] : (i+1)*Nproduit;}  int NbDFOfNode(int i)  const {return FirstDfOfNodeData ? FirstDfOfNodeData[i+1]-FirstDfOfNodeData[i] : Nproduit;}  int MaximalNbOfNodes() const {return MaxNbNodePerElement;};  int MaximalNbOfDF() const {return MaxNbDFPerElement;};    const int * PtrFirstNodeOfElement(int k) const {      return NodesOfElement 	  ? NodesOfElement + (FirstNodeOfElement ? FirstNodeOfElement[k] : k*MaxNbNodePerElement)                 	  : 0;}       int SizeToStoreAllNodeofElement() const {        return  FirstNodeOfElement 	  ?  FirstNodeOfElement[NbOfElements] 	  : MaxNbNodePerElement*NbOfElements;}         int NbOfNodesInElement(int k)   const {                   return FirstNodeOfElement 	  ?  FirstNodeOfElement[k+1] - FirstNodeOfElement[k] 	  : MaxNbNodePerElement ;}  int  esize() const { return  MaxNbDFPerElement*N*last_operatortype;}   // size to store all value of B. function            ~GFESpace()  {  }  // GFESpace(Mesh & TTh,int NbDfOnSommet,int NbDfOnEdge,int NbDfOnElement,int NN=1);   int  renum();    FElement operator[](int k) const { return FElement(this,k);}   FElement operator[](const Element & K) const { return FElement(this,Th(K));}   int  operator()(int k)const {return NbOfNodesInElement(k);}  int  operator()(int k,int i) const { //  the node i of element k      return NodesOfElement ?  *(PtrFirstNodeOfElement(k) + i)  : Th(k,i)  ;}      /*      void Draw(const KN_<R>& U,const KN_<R>& Viso,int j=0,float *colors=0,int nbcolors=0,bool hsv=true,bool drawborder=true) const ; // Draw iso line    void Drawfill(const KN_<R>& U,const KN_<R>& Viso,int j=0,double rapz=1,float *colors=0,int nbcolors=0,bool hsv=true,bool drawborder=true) const ; // Draw iso line        void Draw(const KN_<R>& U,const KN_<R> & Viso, R coef,int j0=0,int j1=1,float *colors=0,int nbcolors=0,bool hsv=true,bool drawborder=true) const  ; // Arrow    void Draw(const KN_<R>& U,const KN_<R>& V,const KN_<R> & Viso, R coef,int iu=0,int iv=0,float *colors=0,int nbcolors=0,bool hsv=true,bool drawborder=true) const  ; // Arrow    Rd MinMax(const KN_<R>& U,const KN_<R>& V,int j0,int j1,bool bb=true) const ;    Rd MinMax(const KN_<R>& U,int j0, bool bb=true) const ;    // void destroy() {RefCounter::destroy();}    */    bool isFEMesh() const { return ! NodesOfElement  && ( N==1) ;} // to make optim  KN<R>  newSaveDraw(const KN_<R> & U,int composante,int & lg,KN<Rd> &Psub,KN<int> &Ksub,int op_U=0) const  ; private: // for gibbs    int gibbsv (long* ptvoi,long* vois,long* lvois,long* w,long* v);};template<class Mesh>inline GbaseFElement<Mesh>::GbaseFElement(  const GFESpace<Mesh> &aVh, int k)   : Vh(aVh),T(Vh.Th[k]),tfe(aVh.TFE[k]),N(aVh.N),number(k){}template<class Mesh>    inline GbaseFElement<Mesh>::GbaseFElement(const   GbaseFElement & K,  const GTypeOfFE<Mesh> & atfe)   : Vh(K.Vh),T(K.T),tfe(&atfe),N(Vh.N),number(K.number){}template<class Mesh>GFElement<Mesh>::GFElement(const GFESpace<Mesh> * VVh,int k)   : GbaseFElement<Mesh>(*VVh,k) ,    p(this->Vh.PtrFirstNodeOfElement(k)),    nb(this->Vh.NbOfNodesInElement(k))    {} template<class Mesh>inline   int  GFElement<Mesh>::operator[](int i) const {  return  p ? p[i] :  ((&this->T[i])-this->Vh.Th.vertices);}  template<class Mesh>inline   int  GFElement<Mesh>::operator()(int i,int df) const {  return  this->Vh.FirstDFOfNode(p ? p[i] :  ((&this->T[i])-this->Vh.Th.vertices)) + df;}  template<class Mesh>inline   int  GFElement<Mesh>::NbDoF(int i) const {  int node =p ? p[i] :  ((&this->T[i])-this->Vh.Th.vertices);  return  this->Vh.LastDFOfNode(node)-this->Vh.FirstDFOfNode(node);}  template<class Mesh>inline void GFElement<Mesh>::BF(const Rd & P,RNMK_ & val) const {  this->tfe->FB(Fop_D0|Fop_D1,this->Vh.Th,this->T,P,val);}template<class Mesh>inline void GFElement<Mesh>::BF(const What_d whatd,const Rd & P,RNMK_ & val) const { this->tfe->FB(whatd,this->Vh.Th,this->T,P,val);}template<class Mesh>inline   R GFElement<Mesh>::operator()(const Rd & PHat,                                const KN_<R> & u,int i,int op)  const{    return (*this->tfe)(*this,PHat,u,i,op);}template<class Mesh>inline  complex<R> GFElement<Mesh>::operator()(const RdHat & PHat,const KN_<complex<R> > & u,int i,int op)  const {    complex<double> * pu=u; // pointeur du tableau    double *pr = static_cast<double*>(static_cast<void*>(pu));        const KN_<R>  ur(pr,u.n,u.step*2);    const KN_<R>  ui(pr+1,u.n,u.step*2);        return complex<R>((*this->tfe)(*this,PHat,ur,i,op),(*this->tfe)(*this,PHat,ui,i,op));}template<class Mesh>R GTypeOfFE<Mesh>::operator()(const GFElement<Mesh> & K,const  RdHat & PHat,const KN_<R> & u,int componante,int op) const {    R v[5000],vf[100];    assert(N*last_operatortype*NbDoF<=5000 && NbDoF <100 );    KNMK_<R> fb(v,NbDoF,N,last_operatortype); //  the value for basic fonction    KN_<R> fk(vf,NbDoF);    for (int i=0;i<NbDoF;i++) // get the local value	fk[i] = u[K(i)];    //  get value of basic function    FB( 1 << op ,K.Vh.Th,K.T,PHat,fb);      R r = (fb('.',componante,op),fk);      return r;}int nbdf_d(const int ndfitem[4],const  int nd[4]);int nbnode_d(const int ndfitem[4],const  int nd[4]);int *builddata_d(const int ndfitem[4],const int nd[4]);        template<class Mesh>class GTypeOfFESum:  public  GTypeOfFE<Mesh> {    public:  typedef GFElement<Mesh> FElement;  typedef typename Mesh::Element  Element;  typedef typename Element::RdHat  RdHat;  typedef typename Mesh::Rd  Rd;  const int k;   KN<const  GTypeOfFE<Mesh> *> teb;  KN<int> NN,DF,comp,numPtInterpolation;   GTypeOfFESum(const KN< GTypeOfFE<Mesh> const *> & t);  GTypeOfFESum(const GFESpace<Mesh> **,int kk);  GTypeOfFESum(const GFESpace<Mesh> &,int kk);      void Build();  // the true constructor       void init(InterpolationMatrix<RdHat> & M,FElement * pK=0,int odf=0,int ocomp=0,int *pp=0) const;     void FB(const What_d whatd,const Mesh & Th,const Element & K,const Rd &P, KNMK_<R> & val) const ;  ~GTypeOfFESum(){}} ;template<class Mesh>void GTypeOfFESum<Mesh>::FB(const What_d whatd,const Mesh & Th,const Element & K,const Rd &P, KNMK_<R> & val) const  {    val=0.0;    SubArray t(val.K());    for (int i=0;i<k;i++)      {	  int j=comp[i];	  int ni=NN[i];	  int di=DF[i];  	  int i1=i+1; 	  int nii=NN[i1];	  int dii=DF[i1];	  assert(ni<nii && di < dii);	  RNMK_ v(val(SubArray(dii-di,di),SubArray(nii-ni,ni),t));     	  if (j<=i)	      teb[i]->FB(whatd,Th,K,P,v);       	  else	      v=val(SubArray(DF[j+1]-DF[j],DF[j]),SubArray(NN[j+1]-NN[j],NN[j]),t);           }} /* il faut reflechir   mais a faire // une class qui mettre une chapeau sur les type d'element finis. template<class Mesh>struct TypeOfFE {        GTypeOfFE<Mesh> *tef;     bool clean;    TypeOfFE(GTypeOfFE<Mesh> & t):tef(&t),clean(false){}    TypeOfFE(GTypeOfFE<Mesh> * t):tef(t),clean(false){}    TypeOfFE(GTypeOfFE<Mesh> & t):tef(t),clean(false){}        ~TypeOfFE() {if(clean) delete tef;}}    */template<class RdHat>template<class Mesh>InterpolationMatrix<RdHat>::InterpolationMatrix(const GFESpace<Mesh> &Vh)  :  N(Vh.N),np(Vh.maxNbPtforInterpolation),ncoef(Vh.maxNbcoefforInterpolation),  invariant(Vh.TFE.constant() ? Vh.TFE[0]->invariantinterpolationMatrix: false),  k(-1),  P(np),  comp(ncoef),  p(ncoef),  dofe(ncoef){   Vh.TFE[0]->GTypeOfFE<Mesh>::init(*this,0,0,0,0);    }template<class RdHat>template<class Mesh>InterpolationMatrix<RdHat>::InterpolationMatrix(const GTypeOfFE<Mesh> & tef)  :  N(tef.N),np(tef.NbPtforInterpolation),ncoef(tef.NbcoefforInterpolation),  invariant(tef.invariantinterpolationMatrix),  k(-1),  P(np),  comp(ncoef),  p(ncoef),  dofe(ncoef)  {  //  virtual void init(InterpolationMatrix<RdHat> & M,FElement * pK=0,int odf=0,int ocomp=0,int *pp=0) const  tef.GTypeOfFE<Mesh>::init(*this,0,0,0,0);}template<class RdHat>void InterpolationMatrix<RdHat>::set(int kk){  if(k==kk) return;  k=kk;  if(invariant) return;  assert(invariant);  // a faire ...}typedef  GTypeOfFE<Mesh3> TypeOfFE3;typedef  GTypeOfFE<Mesh3> TypeOfFE3;typedef  GFESpace<Mesh3> FESpace3;typedef  GFESpace<Mesh2> FESpace2;typedef  GFElement<Mesh3> FElement3;typedef  GFElement<Mesh2> FElement2;typedef  GFElement<Mesh3> FElement3;typedef  GbaseFElement<Mesh2> baseFElement2;typedef  GbaseFElement<Mesh3> baseFElement3;}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -