⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fespace.hpp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 HPP
📖 第 1 页 / 共 3 页
字号:
	Sub_ToFE[kk++]=t[i]->Sub_ToFE[j];    assert(begin_dfcomp[0]==0 && end_dfcomp[N-1]==NbDoF);           Sub_ToFE= this;    throwassert(dim_which_sub_fem[N-1]>=0 && dim_which_sub_fem[N-1]< nb_sub_fem);}   TypeOfFE(const int i,const int j,const int k,const int NN,const  int  *   data,int nsub,int nbsubfem,    int kPi,int npPi,double * coef_Pi_h_a=0)    : NbDoF(3*(i+j)+k),     NbNodeOnVertex(NbNodebyWhat(data,NbDoF,0)),     NbNodeOnEdge(NbNodebyWhat(data,NbDoF,3)),     NbNodeOnElement(NbNodebyWhat(data,NbDoF,6)),     /*     NbDfOnVertex(Count(data,NbDoF,0)),     NbDfOnEdge(Count(data,NbDoF,3)),     NbDfOnElement(Count(data,NbDoF,6)), */       NbDfOnVertex(i),NbDfOnEdge(j),NbDfOnElement(k),N(NN),nb_sub_fem(nbsubfem),     NbNode( (NbDfOnVertex ? 3 :0) + (NbDfOnEdge ? 3 :0 ) +(NbDfOnElement? 1 :0) ),    nbsubdivision(nsub),    DFOnWhat(data),    DFOfNode(data+NbDoF),    NodeOfDF(data+2*NbDoF),    fromFE(data+3*NbDoF),    fromDF(data+4*NbDoF),    dim_which_sub_fem(data+5*NbDoF),    pij_alpha(kPi),P_Pi_h(npPi),    coef_Pi_h_alpha(coef_Pi_h_a),    Sub_ToFE(nb_sub_fem),     fromASubFE(data+3*NbDoF),     fromASubDF(data+4*NbDoF),     begin_dfcomp(data+5*NbDoF+N),     end_dfcomp(data+5*NbDoF+2*N)         {       Sub_ToFE= this;      assert(begin_dfcomp[0]==0 && end_dfcomp[N-1]==NbDoF);     // cout << "TypeOfFE " <<NbDoF << " : " << NbDfOnVertex << " " << NbDfOnEdge << " " << NbDfOnElement <<      // " : " << NbNodeOnVertex << " " << NbNodeOnEdge << " " << NbNodeOnElement << endl;      assert(NbDfOnVertex==Count(data,NbDoF,0));      assert(NbDfOnVertex==Count(data,NbDoF,1));      assert(NbDfOnVertex==Count(data,NbDoF,2));      assert(NbDfOnEdge==Count(data,NbDoF,3));      assert(NbDfOnEdge==Count(data,NbDoF,4));      assert(NbDfOnEdge==Count(data,NbDoF,5));      assert(NbDfOnElement==Count(data,NbDoF,6));            throwassert(dim_which_sub_fem[N-1]>=0 && dim_which_sub_fem[N-1]< nb_sub_fem);}         TypeOfFE(const int nbdf,const int NN,const  int  *   data,int nsub,int nbsubfem,    int kPi,int npPi,double * coef_Pi_h_a=0)    :      NbDoF(nbdf),     NbNodeOnVertex(NbNodebyWhat(data,NbDoF,0)),     NbNodeOnEdge(NbNodebyWhat(data,NbDoF,3)),     NbNodeOnElement(NbNodebyWhat(data,NbDoF,6)),          NbDfOnVertex(Count(data,NbDoF,0)),     NbDfOnEdge(Count(data,NbDoF,3)),     NbDfOnElement(Count(data,NbDoF,6)),     N(NN),     nb_sub_fem(nbsubfem),     NbNode( (NbDfOnVertex ? 3 :0) + (NbDfOnEdge ? 3 :0 ) +(NbDfOnElement? 1 :0) ),    nbsubdivision(nsub),    DFOnWhat(data),    DFOfNode(data+NbDoF),    NodeOfDF(data+2*NbDoF),    fromFE(data+3*NbDoF),    fromDF(data+4*NbDoF),    dim_which_sub_fem(data+5*NbDoF),    pij_alpha(kPi),P_Pi_h(npPi),    coef_Pi_h_alpha(coef_Pi_h_a),    Sub_ToFE(nb_sub_fem) ,       fromASubFE(data+3*NbDoF),     fromASubDF(data+4*NbDoF),     begin_dfcomp(data+5*NbDoF+N),     end_dfcomp(data+5*NbDoF+2*N)         {       Sub_ToFE= this;      assert(begin_dfcomp[0]==0 && end_dfcomp[N-1]==NbDoF);      assert(NbDfOnVertex==Count(data,NbDoF,0));      assert(NbDfOnVertex==Count(data,NbDoF,1));      assert(NbDfOnVertex==Count(data,NbDoF,2));      assert(NbDfOnEdge==Count(data,NbDoF,3));      assert(NbDfOnEdge==Count(data,NbDoF,4));      assert(NbDfOnEdge==Count(data,NbDoF,5));      assert(NbDfOnElement==Count(data,NbDoF,6));            throwassert(dim_which_sub_fem[N-1]>=0 && dim_which_sub_fem[N-1]< nb_sub_fem);}   virtual ~TypeOfFE() { }  virtual R operator()(const FElement & K,const  R2 & PHat,const KN_<R> & u,int componante,int op) const ;  private: static int Count(const int *data,int n,int which)    {      int kk=0;      for (int i=0;i<n;++i)        if (which == data[i]) ++kk;      return kk;}       static int LastNode(const int *data,int n)    {      int kk=0,i0=2*n;      for(int i=0;i<n;i++)        kk=Max(kk,data[i+i0]);      return kk;}      static int NbNodebyWhat(const int *data,int n,int on)   {       const int nmax=100;      int t[nmax];      for (int i=0;i<n;i++)      	t[i]=0;       int k=0,i0=2*n;       for(int i=0;i<n;i++)          if ( data[i]==on)           { int node= data[i+i0];           //  cout << " node " << node << endl;             assert(node < nmax);            if( ! t[node] )               t[node] = 1,++k;            }            //     cout << " on " << on << " k = " << k << endl;     return k;  }            } ; class aSubFMortar;class TypeOfMortar {   friend class FESpace;  friend class FMortar;  friend class ConstructDataFElement;  virtual int NbLagrangeMult(const Mesh &Th,const Mortar &M) const =0;  virtual int NbDoF(const Mesh &Th,const Mortar &M,int i) const =0;  virtual int NbOfNodes(const Mesh &Th,const Mortar &M) const =0;  virtual int NbDoF(const Mesh &Th,const Mortar &M) const =0;  virtual int NodeOfDF(const FESpace &,const Mortar &M,int i) const =0;  virtual int DFOfNode(const FESpace &,const Mortar &M,int i) const =0;  virtual void ConstructionOfNode(const Mesh &Th,int im,int * NodesOfElement,int *FirstNodeOfElement,int &lastnodenumber) const=0;   virtual void ConsTheSubMortar(FMortar &) const =0;   protected:  const int NbDfOnVertex, NbDfOnEdge , N;  public:     TypeOfMortar (int i,int j): NbDfOnVertex(i),NbDfOnEdge(j),N(1){};     virtual  ~TypeOfMortar(){}     } ;class FElement;   class baseFElement { public:      typedef Fem2D::FESpace FESpace;    typedef Fem2D::Mesh Mesh;    typedef Fem2D::Triangle Element;    typedef Fem2D::TypeOfFE  TypeOfFE;  const FESpace &Vh;    const Triangle &T;  const TypeOfFE * tfe;   const int N;  const int number;    baseFElement(  const FESpace &aVh, int k) ;  baseFElement(const   baseFElement & K,  const TypeOfFE & atfe) ;  R EdgeOrientation(int i) const {return T.EdgeOrientation(i);}  //  : Vh(aVh),T(Vh.Th[k]),tfe(aVh.TFE[k]),N(aVh.N),number(k){}};class FElement : public baseFElement { public:  typedef const KN<TypeOfFE::IPJ> &  aIPJ;  typedef  TypeOfFE::IPJ   IPJ;  typedef const KN<R2> &  aR2;      friend class Fem2D::FESpace;  const int *p;  const int nb;  FElement(const FESpace * VVh,int k) ;  public:  int NbOfNodes()const {return nb;}  int  operator[](int i) const ;//{ return  p ? p+i :  ((&T[i])-Vh.Th.vertices);}  N\u00c9 du noeud   int  NbDoF(int i) const ;  // number of DF   int  operator()(int i,int df) const ;// { N\u00c9 du DoF du noeud i de df local df   int  operator()(int df) const { return operator()(NodeOfDF(df),DFOfNode(df));}  void Draw(const KN_<R> & U, const  KN_<R> & VIso,int j=0) const ;        void SaveDraw(const KN_<R> & U,int j,R* Usave) const ;    void SaveDraw(const KN_<R> & U,const KN_<R> & V,int iU,int iV,R* UVsave) const ;    void Drawfill(const KN_<R> & U, const  KN_<R> & VIso,int j=0,double rapz=1) const ;    void Draw(const RN_& U,const RN_& V, const  KN_<R> & Viso,R coef,int i0,int i1) const;  R2   MinMax(const RN_& U,const RN_& V,int i0,int i1) const  ;  R2   MinMax(const RN_& U,int i0) const  ;  void BF(const R2 & P,RNMK_ & val) const;// { tfe->FB(Vh.Th,T,P,val);}  void BF(const bool * whatd, const R2 & P,RNMK_ & val) const;// { tfe->FB(Vh.Th,T,P,val);} // void D2_BF(const R2 & P,RNMK_ & val) const ; //{ tfe->D2_FB(Vh.Th,T,P,val);}  void Pi_h(RN_ val,InterpolFunction f,R *v,  void * arg) const;//  {tfe->Pi_h(Vh.Th,T,val,f,v);}  aIPJ Pi_h_ipj() const { return tfe->Ph_ijalpha();}  aR2 Pi_h_R2() const { return tfe->Pi_h_R2();}  void Pi_h(KN_<R> & v) const { return tfe->Pi_h_alpha(*this,v);}    int NbDoF() const { return tfe->NbDoF;}  int DFOnWhat(int i) const { return tfe->DFOnWhat[i];}  int FromDF(int i) const { return tfe->fromDF[i];}  int FromFE(int i) const { return tfe->fromFE[i];} // df is the df in element   int NodeOfDF(int df) const { return tfe->NodeOfDF[df];} // a node  int FromASubFE(int i) const { return tfe->fromASubFE[i];}  int FromASubDF(int i) const { return tfe->fromASubDF[i];}   int DFOfNode(int df) const { return tfe->DFOfNode[df];} // the df number on the node   //  add Mai 2008 for optimization   int dfcbegin(int ic) const { return this->tfe->begin_dfcomp[ic];}  int dfcend(int ic) const { return this->tfe->end_dfcomp[ic];}   R operator()(const R2 & PHat,const KN_<R> & u,int i,int op)  const ;  complex<R> operator()(const R2 & PHat,const KN_<complex<R> > & u,int i,int op)  const ;   // FElementGlobalToLocal operator()(const KN_<R> & u ) const { return FElementGlobalToLocal(*this,u);}  private:  int nbsubdivision() const { return tfe->nbsubdivision;} // for draw   };    class aSubFMortar { public:  R a,b;   R2 A,B;   int left,right; //  int TLeft() const { return left/3;}  int ELeft() const{ return left%3;}    int TRight() const{ return right/3;}  int ERight()const{ return right%3;}    int * DfNumberOFmul;  int  Nbmul;  // int *whatnode[2];  R (**f)(const FESpace *,const aSubFMortar * ,R); // array of function of mul on aSubMortar   R lg1(){throwassert(a<b);return b-a;}    aSubFMortar():DfNumberOFmul(0),Nbmul(0),f(0){}   R2 operator()(const Mesh & Th,R x,int side) const   {      int kk = side==0 ? left : right;      int k=kk/3;      int e=kk%3;      const Triangle & K(Th[k]);      int c = VerticesOfTriangularEdge[e][0];      int d = VerticesOfTriangularEdge[e][1];            const R2 &C=K[c];      const R2 &D=K[d];      // $ [AB] include in  [CD] $      R2 CD(C,D);      R  CD2=(CD,CD);      R la= (CD,A-C)/CD2;      R lb= (CD,B-C)/CD2;      //  A = C*(1-la)+ la*D      //  B = C*(1-lb)+ lb*D      //  X = (1-x)*A+x*B;      //  X = (1-x)*(C*(1-la)+ la*D) + x*(C*(1-lb)+ lb*D)      //  X = C*((1-x)*(1-la)+x*(1-lb))      R xx=((1-x)*(1-la)+x*(1-lb));      throwassert(xx>=0 && xx <= 1);      return TriangleHat[c]*(xx)+TriangleHat[d]*(1-xx);   }  };  class FMortar { public:  friend class FESpace;  const FESpace &Vh;    const Mortar &M;  const int *p;  const int nbn; //  nb of node//  const int nbnl,nbnr; // nb of node left, right    //   we supposse   //  the node numbering in a mortar is  //  1   the lagrange mul.  //  2   the node of left side  //  3   the node of right side    const int N;  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -