⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fespace.hpp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 HPP
📖 第 1 页 / 共 3 页
字号:
// -*- Mode : c++ -*-//// SUMMARY  :      // USAGE    :        // ORG      : // AUTHOR   : Frederic Hecht// E-MAIL   : hecht@ann.jussieu.fr///*  This file is part of Freefem++  Freefem++ is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.  Freefem++  is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public License for more details.  You should have received a copy of the GNU Lesser General Public License along with Freefem++; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA */#ifndef FESpace_h_#define FESpace_h_#include "FESpacen.hpp"#include <cstdarg>namespace  Fem2D {  class FESpace; class TypeOfFE;  /*// numbering of derivative enum operatortype { op_id=0,   op_dx=1,op_dy=2,   op_dxx=3,op_dyy=4,   op_dyx=5,op_dxy=5,      op_dz=6,   op_dzz=7,        op_dzx=8,op_dxz=8,    op_dzy=9,op_dyz=9      };     const int last_operatortype=10; inline void initwhatd(bool *whatd,int k){  for (int i=0;i<last_operatortype;i++)    whatd[i]=false;      whatd[k]=true;}  */typedef KN_<R> RN_;typedef KN<R>  RN;typedef KNM_<R> RNM_;//typedef KNM<R>  RNM;typedef KNMK_<R> RNMK_;typedef KNMK<R>  RNMK;inline int FindIn(int v,int *a,int n){  for (int i=0;i<n;i++)    if( v==a[i]) return i;  return -1;};//  Methode boeuf //    on suppose que pour chaque elment fini// on sait calculer //   un tableau de point x,y // les valeur de la fonction et des derives// FB(RN_<R2> // i  =  df// j  = [0 N[  (ou N est la dim de l'espace d'arrive N=3 // k = 0,1,2   f,fx,fy class FElement;class baseFElement;class FMortar;class TypeOfMortar;//  for FE//typedef void  (* basicFunction)(const FElement & FE,const R2 &P, RNMK_ & val);typedef void  (* InterpolFunction)(R* v, const R2 & P,const baseFElement &,int where,const R2 & Phat, void * arg);//typedef void (*InterpolantFunction)(const FElement & FE,RN_ & val, InterpolFunction f, R* v);//  for FM   ( Finite Mortar  Mortar + interpolation)typedef void  (* basicFunctionMortar)(const FMortar & FE,const R2 &P, RNMK_ & val);typedef void  (* InterpolFunctionMortar)(R* v, const R2 & P,const Mortar &,int where,const R2 & Phat);typedef void  (*InterpolantFunctionMortar)(const FMortar & FE,RN_ & val, InterpolFunctionMortar f, R* v);//void P1Functions(const FElement &FE,const R2 & P,RNMK_ & val);//void P2Functions(const FElement &FE,const R2 & P,RNMK_ & val);class VofScalarFE {   R v[3];  public:  VofScalarFE() {v[0]=v[1]=v[2]=0;}  VofScalarFE(R f,R fx,R fy) {v[0]=f;v[1]=fx;v[2]=fy;}  R & operator[](int i){ return v[i];}  const R & operator[](int i) const { return v[i];}    R f()  { return v[0];}  R fx() { return v[1];}  R fy() { return v[2];} VofScalarFE &operator+=(const VofScalarFE & a) { v[0]+=a.v[0]; v[1]+=a.v[1]; v[2]+=a.v[2];return *this;}  };class ConstructDataFElement {  friend class FESpace;  //int thecounter; //  chang 09/2008 the counter is a pointer because     //  if you remove before the master the counter become invalide.   int * counter;  int MaxNbNodePerElement;  int MaxNbDFPerElement;  int *NodesOfElement;  int *FirstNodeOfElement;  int *FirstDfOfNode;  int NbOfElements;  int NbOfDF;  int NbOfNode;  int Nproduit;  ConstructDataFElement(const Mesh &Th,/*int NbDfOnSommet,int NbDfOnEdge,int NbDfOnElement,*/  const  KN<const TypeOfFE *> & TFEs,const TypeOfMortar *tm=0,  int nbdfv=0,const int *ndfv=0,int nbdfe=0,const int *ndfe=0);  ConstructDataFElement(const ConstructDataFElement *,int k);  ConstructDataFElement(const FESpace ** l,int k,const  KN<const TypeOfFE *> & TFEs) ;  void renum(const long *r,int l)  ;   ~ConstructDataFElement(); void Make(const Mesh &Th,/*int NbDfOnSommet,int NbDfOnEdge,int NbDfOnElement*/const  KN<const TypeOfFE *> & TFEs,const TypeOfMortar *tm=0,   int nbdfv=0,const int *ndfv=0,int nbdfe=0,const int *ndfe=0);private:    static int *NewCounter() { int * p=new int; *p=0;return p;}// add the build thecounter. };template<class T>inline int sum(const T ** l,int const T::*p,int n)  {    int r=0;    for (int i=0;i<n;i++)     r += l[i]->*p;     return r;  }  template<class T>inline int max(const T ** l,int const T::*p,int n)  {    int r=0;    for (int i=0;i<n;i++)     r =Max( l[i]->*p,r);     return r;  }  class TypeOfFE { public://  The FEM is in R^N//  The FEM is compose from nb_sub_fem//  dim_which_sub_fem[N] give  friend class FESpace;  friend class FElement;  friend class FEProduitConstruct;  const int NbDoF;  const int NbNodeOnVertex, NbNodeOnEdge, NbNodeOnElement;  const int NbDfOnVertex, NbDfOnEdge, NbDfOnElement, N,nb_sub_fem;  const  int NbNode;  //  remark  // virtual void FB(const Mesh & Th,const Triangle & K,const R2 &P, RNMK_ & val) const =0;  virtual void FB(const bool *,const Mesh & Th,const Triangle & K,const R2 &P, RNMK_ & val) const =0;//  virtual void D2_FB(const Mesh & Th,const Triangle & K,const R2 &P, RNMK_ & val) const=0; // virtual void Pi_h(const baseFElement & K,RN_ & val, InterpolFunction f, R* v,int , void *) const=0;    // soit   //  $(U_pj)_{{j=0,N-1}; {p=0,nbpoint_Pi_h-1}}$ les valeurs de U au point Phat[i];  //   p est le numero du point d'integration  //   j est la composante   //  l'interpole est  defini par  //  Pi_h u = \sum_k u_k w^k , et u_i = \sum_pj alpha_ipj U_pj  //  la matrice de alpha_ipj est tres creuse  struct IPJ {     int i,p,j; // i is DoF, p is Point, j is componante     IPJ(int ii=0,int pp=0,int jj=0):i(ii),p(pp),j(jj) {}  };    friend KN<IPJ> Makepij_alpha(const TypeOfFE **,int );  friend KN<R2> MakeP_Pi_h(const TypeOfFE **,int );    const KN<IPJ > & Ph_ijalpha() const {return pij_alpha;} // la struct de la matrice   const KN<R2> & Pi_h_R2() const { return P_Pi_h;}   // les points   virtual void Pi_h_alpha(const baseFElement & K,KN_<double> & v) const     {  assert(coef_Pi_h_alpha);        v=KN_<double>(coef_Pi_h_alpha,pij_alpha.N());}   //  ----      const int nbsubdivision; // nb of subdivision for plot   int const * const DFOnWhat; //  0,1,2 vertex 3,4,5 edge 6  triangle   int const * const DFOfNode; // n\u00c9 du df on Node   int const * const NodeOfDF; //    int const * const fromFE;   //  the df  come from df of FE   int const * const fromDF;   //  the df  come from with FE   int const * const dim_which_sub_fem; // from atomic sub FE for CL (size N)   KN<IPJ > pij_alpha ;   KN<R2 > P_Pi_h ;  double *coef_Pi_h_alpha;   KN<TypeOfFE *> Sub_ToFE; //  List of atomic sub TFE avril 2006     //  form Atomic Sub FE    int const * const fromASubFE; //  avril 2006 for CL   int const * const fromASubDF; //  avril 2006 for CL  int const * const  begin_dfcomp; //  mai 2008 for optimiation   int const  * const end_dfcomp; // mai 2008      // if 0  no plot   public:       TypeOfFE(const TypeOfFE & t,int k,const int * data,const int * data1)     :       NbDoF(t.NbDoF*k),      NbNodeOnVertex(t.NbNodeOnVertex),NbNodeOnEdge(t.NbNodeOnEdge),NbNodeOnElement(t.NbNodeOnElement),      NbDfOnVertex(t.NbDfOnVertex*k),NbDfOnEdge(t.NbDfOnEdge*k),NbDfOnElement(t.NbDfOnElement*k),      N(t.N*k),nb_sub_fem(t.nb_sub_fem*k),      NbNode(t.NbNode),      nbsubdivision(t.nbsubdivision),    DFOnWhat(data),    DFOfNode(data+NbDoF),    NodeOfDF(data+2*NbDoF),    fromFE(data+3*NbDoF),    fromDF(data+4*NbDoF),    dim_which_sub_fem(data+5*NbDoF),    pij_alpha(t.pij_alpha.N()*k),P_Pi_h(t.P_Pi_h),    coef_Pi_h_alpha(0),    Sub_ToFE(nb_sub_fem),    fromASubFE(data1+0*NbDoF),      fromASubDF(data1+1*NbDoF),      begin_dfcomp(data1+2*NbDoF),      end_dfcomp(data1+2*NbDoF+N)    {        for(int i=0,kk=0;i<k;i++)        for (int j=0;j<t.nb_sub_fem;j++)          Sub_ToFE[kk++]=t.Sub_ToFE[j];       assert(begin_dfcomp[0]==0 && end_dfcomp[N-1]==NbDoF);             throwassert(dim_which_sub_fem[N-1]>=0 && dim_which_sub_fem[N-1]< nb_sub_fem);     // Warning the componant is moving first         for (int j=0,l=0;j<t.pij_alpha.N();j++) // for all sub DF          for(int i=0; i<k; i++,l++) // for componate          {          pij_alpha[l].i=t.pij_alpha[j].i*k+i;   //  DoF number          pij_alpha[l].p=t.pij_alpha[j].p;       //  point of interpolation          pij_alpha[l].j=t.pij_alpha[j].j+i*t.N; //  componante of interpolation          }                             }            TypeOfFE(const TypeOfFE ** t,int k,const int * data,const int * data1)     :       NbDoF(sum(t,&TypeOfFE::NbDoF,k)),      NbNodeOnVertex(NbNodebyWhat(data,NbDoF,0)),      NbNodeOnEdge(NbNodebyWhat(data,NbDoF,3)),      NbNodeOnElement(NbNodebyWhat(data,NbDoF,6)),      NbDfOnVertex(sum(t,&TypeOfFE::NbDfOnVertex,k)),      NbDfOnEdge(sum(t,&TypeOfFE::NbDfOnEdge,k)),      NbDfOnElement(sum(t,&TypeOfFE::NbDfOnElement,k)),      N(sum(t,&TypeOfFE::N,k)),nb_sub_fem(sum(t,&TypeOfFE::nb_sub_fem,k)),      NbNode( (NbDfOnVertex ? 3 :0) + (NbDfOnEdge ? 3 :0 ) +(NbDfOnElement? 1 :0) ),            nbsubdivision(max(t,&TypeOfFE::nbsubdivision,k)),          DFOnWhat(data),    DFOfNode(data+NbDoF),    NodeOfDF(data+2*NbDoF),    fromFE(data+3*NbDoF),    fromDF(data+4*NbDoF),    dim_which_sub_fem(data+5*NbDoF),    pij_alpha(Makepij_alpha(t,k)),    P_Pi_h(MakeP_Pi_h(t,k)),    coef_Pi_h_alpha(0),    Sub_ToFE(nb_sub_fem),    fromASubFE(data1+0*NbDoF),      fromASubDF(data1+1*NbDoF),      begin_dfcomp(data1+2*NbDoF),      end_dfcomp(data1+2*NbDoF+N)      {    for(int i=0,kk=0;i<k;i++)      for (int j=0;j<t[i]->nb_sub_fem;j++)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -