⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fespace-v0.cpp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 CPP
📖 第 1 页 / 共 4 页
字号:
  f0[3] = 4*l1*l2; // oppose au sommet 0  f0[4] = 4*l0*l2; // oppose au sommet 1  f0[5] = 4*l1*l0; // oppose au sommet 3  } if(  whatd[op_dx] || whatd[op_dy] || whatd[op_dxx] || whatd[op_dyy] ||  whatd[op_dxy]) {   R2 Dl0(K.H(0)), Dl1(K.H(1)), Dl2(K.H(2));  if (whatd[op_dx])  {    RN_ f0x(val('.',0,op_dx));   f0x[0] = Dl0.x*l4_0;  f0x[1] = Dl1.x*l4_1;  f0x[2] = Dl2.x*l4_2;  f0x[3] = 4*(Dl1.x*l2 + Dl2.x*l1) ;  f0x[4] = 4*(Dl2.x*l0 + Dl0.x*l2) ;  f0x[5] = 4*(Dl0.x*l1 + Dl1.x*l0) ;  } if (whatd[op_dy])  {      RN_ f0y(val('.',0,op_dy));   f0y[0] = Dl0.y*l4_0;  f0y[1] = Dl1.y*l4_1;  f0y[2] = Dl2.y*l4_2;  f0y[3] = 4*(Dl1.y*l2 + Dl2.y*l1) ;  f0y[4] = 4*(Dl2.y*l0 + Dl0.y*l2) ;  f0y[5] = 4*(Dl0.y*l1 + Dl1.y*l0) ;  }  if (whatd[op_dxx])  {      RN_ fxx(val('.',0,op_dxx));     fxx[0] = 4*Dl0.x*Dl0.x;    fxx[1] = 4*Dl1.x*Dl1.x;    fxx[2] = 4*Dl2.x*Dl2.x;    fxx[3] =  8*Dl1.x*Dl2.x;    fxx[4] =  8*Dl0.x*Dl2.x;    fxx[5] =  8*Dl0.x*Dl1.x;  } if (whatd[op_dyy])  {      RN_ fyy(val('.',0,op_dyy));     fyy[0] = 4*Dl0.y*Dl0.y;    fyy[1] = 4*Dl1.y*Dl1.y;    fyy[2] = 4*Dl2.y*Dl2.y;    fyy[3] =  8*Dl1.y*Dl2.y;    fyy[4] =  8*Dl0.y*Dl2.y;    fyy[5] =  8*Dl0.y*Dl1.y;  } if (whatd[op_dxy])  {      assert(val.K()>op_dxy);    RN_ fxy(val('.',0,op_dxy));       fxy[0] = 4*Dl0.x*Dl0.y;    fxy[1] = 4*Dl1.x*Dl1.y;    fxy[2] = 4*Dl2.x*Dl2.y;    fxy[3] =  4*(Dl1.x*Dl2.y + Dl1.y*Dl2.x);    fxy[4] =  4*(Dl0.x*Dl2.y + Dl0.y*Dl2.x);    fxy[5] =  4*(Dl0.x*Dl1.y + Dl0.y*Dl1.x);  }  } }/* void TypeOfFE_P1Lagrange::Pi_h(const baseFElement & K,RN_ & val, InterpolFunction f, R* v,int j,  void * arg) const{  const R2 Pt[] = { R2(0,0), R2(1,0), R2(0,1) };   for (int i=0;i<3;i++)     {       f(v,K.T(Pt[i]),K,i,Pt[i],arg),val[i]=*(v+j);} } void TypeOfFE_P2Lagrange::Pi_h(const baseFElement & K,RN_ & val, InterpolFunction f, R* v,int j, void * arg) const{  const R2 Pt[] = { R2(0,0), R2(1,0), R2(0,1),R2(0.5,0.5),R2(0,0.5),R2(0.5,0) };   for (int i=0;i<6;i++)     {     f(v,K.T(Pt[i]),K,i,Pt[i],arg),val[i]=*(v+j);} }*/  //TypeOfFE  P1Lagrange(1,0,0,P1Functions,D2_P1Functions,P1Interpolant,DataP1Lagrange);//TypeOfFE  P2Lagrange(1,1,0,P2Functions,D2_P2Functions,P2Interpolant,DataP2Lagrange,3);//  case of   fine mesh   class TypeOfMortarCas1: public TypeOfMortar {   friend class FESpace;  friend class FMortar;  friend class ConstructDataFElement;  protected:  int NbLagrangeMult(const Mesh &,const Mortar &M) const ;    int NbDoF(const Mesh &,const Mortar &M,int i) const      { int l(M.NbLeft()),r(M.NbRight());       int n =Max(l,r);       int mn=Min(l,r);       return (l+r)*(NbDfOnVertex + NbDfOnEdge) + (n+1)*NbDfOnVertex + n*NbDfOnEdge -mn-1;       }  int NbOfNodes(const Mesh &,const Mortar &M) const // call one time       {int l(M.NbLeft()),r(M.NbRight()); return (l+r)*(vertex_is_node+edge_is_node)+1;}  int NbDoF(const Mesh &,const Mortar &M) const      { int l(M.NbLeft()),r(M.NbRight());       int n =Max(l,r);       int mn=Min(l,r);       return (l+r)*(NbDfOnVertex + NbDfOnEdge) + (n+1)*NbDfOnVertex + n*NbDfOnEdge -mn-1;       }     int NodeOfDF(const FESpace &Vh,const Mortar &M,int i) const      {throwassert(0);return 0;}   int DFOfNode(const FESpace &Vh,const Mortar &M,int i) const      {throwassert(0);return 0;}   void ConstructionOfNode(const Mesh &Th,int im,int * NodesOfElement,int *FirstNodeOfElement,int &lastnodenumber) const;   void ConsTheSubMortar(FMortar & ) const;         const int vertex_is_node,edge_is_node;  public:     TypeOfMortarCas1 (int i,int j): TypeOfMortar(i,j),      vertex_is_node(i?1:0),edge_is_node(j?1:0) {};     }  MortarCas1P2(1,1) ; const TypeOfMortar & TheMortarCas1P2(MortarCas1P2);  void TypeOfMortarCas1::ConstructionOfNode(const Mesh &Th,int im,int * NodesOfElement,int *FirstNodeOfElement,int &lastnodenumber) const{    // im   mortar number  // trop complique on change              const Mortar &M(Th.mortars[im]);             int k = Th.nt+im;             int  kk=FirstNodeOfElement[k]; //  begin                // lagrange  multiplicator one new node               NodesOfElement[kk++] = lastnodenumber++;/*                                            int il = M.NbLeft();             int ir = M.NbRight();             int ir1 = ir-1;             //  left                          for( int j=0;j<il;j++)  //  numbering vertex0 edge vertex1              {                 int K = M.TLeft(j);  // triangle                int e = M.ELeft(j);  //  edge                int nbneK = FirstNodeOfElement[K];                int oe = vertex_is_node ? 3 : 0;                int i0 = VerticesOfTriangularEdge[e][0];                int i1 = VerticesOfTriangularEdge[e][1];                if (vertex_is_node && !j)   //  just the first time                    NodesOfElement[kk++]=NodesOfElement[nbneK +i0];                if (edge_is_node)                   NodesOfElement[kk++]=NodesOfElement[nbneK+oe+e];                if (vertex_is_node )                     NodesOfElement[kk++]=NodesOfElement[nbneK +i1];              }             //  right              for( int j=0;j<ir;j++)  //  numbering vertex0 edge vertex1              {                 int K = M.TRight(j);  // triangle                int e = M.ERight(j);  //  edge                int nbneK = FirstNodeOfElement[K];                int oe = vertex_is_node ? 3 : 0;                                int i0 = VerticesOfTriangularEdge[e][1]; //  change the sens because right side                int i1 = VerticesOfTriangularEdge[e][0];              //  if (vertex_is_node &&  !j)   // never                //    NodesOfElement[kk++]=NodesOfElement[nbneK +i0];                if (edge_is_node)                    NodesOfElement[kk++]=NodesOfElement[nbneK+oe+e];                if (vertex_is_node  && (j != ir1) )  //  skip the last                    NodesOfElement[kk++]=NodesOfElement[nbneK +i1];              } */                            throwassert(FirstNodeOfElement[k+1]==kk);} R  d1P1F0(const FESpace *,const aSubFMortar *,R x) {return 1-x;}// 1 on 0 R  d1P1F1 (const FESpace *,const aSubFMortar *,R x) {return x;}//  1 on 1  R  d1P2F0 (const FESpace *,const aSubFMortar *,R x) {return (1-x)*(1-2*x);}// 1 on x=0 R  d1P2F1(const FESpace *,const aSubFMortar *,R x) {return (1-x)*x*4;} // 1 on x=1/2 R  d1P2F2(const FESpace *,const aSubFMortar *,R x) {return x*(2*x-1);} // 1 on x=1  void  TypeOfMortarCas1::ConsTheSubMortar(FMortar & sm) const   { //  constuction of    /*      int nbsm; // nb of submortar  aSubFMortar * sm;  ~FMortar() { delete [] dataDfNumberOFmul; delete [] dataf;}  private:    int *dataDfNumberOFmul;   R (**dataf)(const FESpace *,const aSubFMortar *,R);   */   //  typedef     const Mesh &Th(sm.Vh.Th);     const Mortar & M(sm.M);     int nl=M.NbLeft();     int nr=M.NbRight();     int nbsm= nl+nr-1;     sm.nbsm = nbsm;     int ldata = 6*nbsm;// 3 gauche+ 3 droite      sm.sm = new aSubFMortar[nbsm];     sm.datai = new int [ldata];     sm.dataf = new (R (*[ldata])(const FESpace *,const aSubFMortar *,R))  ;     int *dataDfNumberOFmul=sm.datai;          R (**dataf)(const FESpace *,const aSubFMortar *,R) ;     dataf=sm.dataf;     for (int i=0;i<ldata;i++) sm.dataf[i]=0;   //  int * data0=sm.data+ldata;   //  int * data1=data0+ldata;          //  now the construction      int l=0,g=0;     R2 A(M.VLeft(0));     R2 B(M.VLeft(nl));     throwassert(&M.VLeft(0) == &M.VRight(0));     throwassert(&M.VLeft(nl) == &M.VRight(nr));         R2 AB(A,B);     R lg=Norme2(AB);    // cout << " Mortar from " << A << " to " << B << " = " <<lg << endl;     R2 AB1(AB/lg);     int il=0,ir=0;     int k=0;     R la=0.0;     R lb=0.0;     R2 AA(A),BB(A);   //  cout << "lg : " <<lg ;     do {       sm.sm[k].left  = M.left[il];       sm.sm[k].right =  M.right[ir];       R2 Bl(M.VLeft(il+1));       R2 Br(M.VRight(ir+1));       R ll=(AB1,Bl-A), lr=(AB1,Br-A);     //  throwassert ( ll >=0 && lr >= 0);     //  throwassert ( ll <=lg  && lr <= lg);          //    cout << "AA , BB = " << AA << "," << BB << endl;    //   cout << " " << ll << " " << lr << " ll=" << sm.sm[k].left << ", ";       if (ll<lr) {BB=Bl,lb=ll,il++;} else {BB=Br, lb=lr,ir++;}  //     cout << k << " " << k << " " << la/lg << " " << lb/lg << endl;       sm.sm[k].a = la/lg;       sm.sm[k].b = lb/lg;       sm.sm[k].A=AA;       sm.sm[k].B=BB;              la=lb;       AA=BB;       k++;       throwassert(k<=nbsm);     } while (il<nl && ir < nr);       //   cout << "k=" << k <<endl;     throwassert(nbsm==Max(nl,nr));      //throwassert(nbsm<=k);    nbsm=k;    sm.nbsm=k;//   construction of interpolation //  1) on a P1 on P2 //   P2  si les longueurs des aSubMortar precedende et suivant  sont les meme //   sinon P1    //  calcul de leps      R leps=1.0/(1048576.0) ; // 1/2^20      R lgp=0;     R lgc=0;     R lgs=sm.sm[0].lg1();    // cout << lgp << " " << lgc << " " << lgs << endl;          int nmul=0;     for (int k=0;k<nbsm;k++)        {                  lgp=lgc;         lgc=lgs;         lgs=  k+1 == nbsm  ? 0 : sm.sm[k+1].lg1();         sm.sm[k].DfNumberOFmul= dataDfNumberOFmul;         sm.sm[k].f=dataf;        // cout << lgp << " " << lgc << " " << lgs << " ";         if ( Abs(lgp-lgc) < leps && Abs(lgs-lgc) < leps )          { // P2           sm.sm[k].Nbmul=3;           *dataDfNumberOFmul++=nmul++;           *dataDfNumberOFmul++=nmul++;           *dataDfNumberOFmul++=nmul;           *dataf++ = d1P2F0;           *dataf++ = d1P2F1;           *dataf++ = d1P2F2;          // cout << "P2 " << nmul << " " ;                     }         else           { // P1                   sm.sm[k].Nbmul=2;           *dataDfNumberOFmul++=nmul++;           *dataDfNumberOFmul++=nmul;           *dataf++ = d1P1F0;           *dataf++ = d1P1F1;          // cout << "P1 " << nmul << " " ;                     }       }      nmul++;     // cout << " " << nmul << " " <<  sm.NbDoF(0) << endl;      throwassert(nmul==sm.NbDoF(0));        }     int TypeOfMortarCas1::NbLagrangeMult(const Mesh &,const Mortar &M) const      {        int nl = M.NbLeft();       int nr = M.NbRight();       R2 A(M.VLeft(0));       R2 B(M.VLeft(nl));       R2 AB(A,B);       R lg=Norme2(AB);       R leps = lg/1048576.0;       throwassert(nl==1 || nr==1);       R lgp=0,lgc=0,lgs=0;       int nbmul=3;        if (nr==1)         {        R2 AA(M.VLeft(0)),BB(M.VLeft(1));        lgp= Norme2(BB-AA); // preced        AA=BB;        BB=M.VLeft(2);         lgc= Norme2(BB-AA); // courant                 for (int i=1;i<nl-1;i++)         {             AA=BB;            BB=M.VLeft(i+2);             lgs=Norme2(AA-BB); // le suivant             if ( Abs(lgp-lgc) < leps && Abs(lgs-lgc) < leps )              nbmul+=2; // P2            else               nbmul+=1;// P1;            lgp=lgc;            lgc=lgs;                     }        }        else        {        R2 AA(M.VRight(0)),BB(M.VRight(1));        lgp= Norme2(BB-AA); // preced        AA=BB;        BB=M.VRight(2);         lgc= Norme2(BB-AA); // courant                 for (int i=1;i<nr-1;i++)         {             AA=BB;            BB=M.VRight(i+2);             lgs=Norme2(AA-BB); // le suivant             if ( Abs(lgp-lgc) < leps && Abs(lgs-lgc) < leps )              nbmul+=2; // P2            else               nbmul+=1;// P1;            lgp=lgc;            lgc=lgs;                     }        }       throwassert(nbmul>2);       return nbmul;      }   // ---  FMortar::FMortar(const FESpace * VVh,int k)  :     Vh(*VVh),    M(Vh.Th.mortars[k-Vh.Th.nt]),    N(VVh->N),    p(Vh.PtrFirstNodeOfElement(k)),    nbn(Vh.NbOfNodesInElement(k)),    tom(Vh.tom)     { throwassert(k>=Vh.Th.nt && k <Vh.Th.nt + Vh.Th.NbMortars);   VVh->tom->ConsTheSubMortar(*this);}    R TypeOfFE::operator()(const FElement & K,const  R2 & PHat,const KN_<R> & u,int componante,int op) const   {   R v[1000],vf[100];   assert(N*3*NbDoF<=1000 && NbDoF <100 );   KNMK_<R> fb(v,NbDoF,N,op+1); //  the value for basic fonction   KN_<R> fk(vf,NbDoF);   for (int i=0;i<NbDoF;i++) // get the local value    fk[i] = u[K(i)];    //  get value of basic function   bool whatd[last_operatortype];   for (int i=0;i<last_operatortype;i++)      whatd[i]=false;   whatd[op]=true;   FB(whatd,K.Vh.Th,K.T,PHat,fb);     R r = (fb('.',componante,op),fk);     return r;  } static TypeOfFE_P1Lagrange P1LagrangeP1;static TypeOfFE_P1Bubble P1BubbleP1;static TypeOfFE_P2Lagrange P2LagrangeP2;TypeOfFE  & P2Lagrange(P2LagrangeP2);TypeOfFE  & P1Bubble(P1BubbleP1);TypeOfFE  & P1Lagrange(P1LagrangeP1);static ListOfTFE typefemP1("P1", &P1LagrangeP1);static ListOfTFE typefemP1b("P1b", &P1BubbleP1);static ListOfTFE typefemP2("P2", &P2LagrangeP2);static  ListOfTFE typefemRT("RT0", &RTLagrange);static  ListOfTFE typefemRTOrtho("RT0Ortho", &RTLagrangeOrtho);  extern  TypeOfFE & RTmodifLagrange, & P1ttdc, & P2ttdc; static  ListOfTFE typefemRTmodif("RTmodif", &RTmodifLagrange); static ListOfTFE typefemP0("P0", &P0Lagrange); static ListOfTFE typefemP1nc("P1nc", &P1ncLagrange); static ListOfTFE typefemP1ttdc("P1dc", &P1ttdc); static ListOfTFE typefemP2ttdc("P2dc", &P2ttdc); } // fin de namespace Fem2D 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -