⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fespace-v0.cpp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 CPP
📖 第 1 页 / 共 4 页
字号:
    delete [] FirstDfOfNode;  } else counter--;} ConstructDataFElement::ConstructDataFElement(const ConstructDataFElement * t,int k)  :thecounter(0),    counter(t->counter),   MaxNbNodePerElement(t->MaxNbNodePerElement),   MaxNbDFPerElement(t->MaxNbDFPerElement*k),   NodesOfElement(t->NodesOfElement),   FirstNodeOfElement(t->FirstNodeOfElement),   FirstDfOfNode(0),   NbOfElements(t->NbOfElements),   NbOfDF(t->NbOfDF*k),   NbOfNode(t->NbOfNode),   Nproduit(t->Nproduit*k) {   throwassert(t==0 || t->FirstDfOfNode==0);   *counter++; }ConstructDataFElement::ConstructDataFElement (const Mesh &Th,int NbDfOnSommet,int NbDfOnEdge,int NbDfOnElement,const TypeOfMortar *tm,int nbdfv,const int *ndfv,int nbdfe,const int *ndfe): counter(&thecounter),thecounter(0) {  Make(Th,NbDfOnSommet,NbDfOnEdge,NbDfOnElement, tm,nbdfv,ndfv,nbdfe,ndfe);}ConstructDataFElement::ConstructDataFElement(const FESpace ** l,int k) : thecounter(0),counter(&thecounter) { int NbDfOnSommet=0; int NbDfOnEdge=0; int NbDfOnElement=0; const Mesh & Th(l[0]->Th); for  (int i=0;i<k;i++)   {     NbDfOnSommet += l[i]->TFE[0]->NbDfOnVertex;     NbDfOnEdge += l[i]->TFE[0]->NbDfOnEdge;     NbDfOnElement += l[i]->TFE[0]->NbDfOnElement;     throwassert( &Th== &l[i]->Th);      throwassert( l[i]->TFE.constant());   }    Make(Th,NbDfOnSommet,NbDfOnEdge,NbDfOnElement,0);   } void ConstructDataFElement::Make(const Mesh &Th,int NbDfOnSommet,int NbDfOnEdge,int NbDfOnElement,const TypeOfMortar *tm,int nb_dfv,const int *ndfv,int nb_dfe,const int *ndfe)   {  *counter=0;  Nproduit =1;  int ndf=0,samendf=1;    int nbdfe=3*NbDfOnSommet+3*NbDfOnEdge+NbDfOnElement;  int nbne = 0;  int nn=0;    int firstmul=0;  throwassert( tm || Th.NbMortars==0);  NbOfElements = Th.nt; //  by default  // if mortars   //  int NbOfNodeL=0;  NbOfElements += Th.NbMortars;    FirstDfOfNode =0;  FirstNodeOfElement=0;  MaxNbDFPerElement=3*NbDfOnSommet+3*NbDfOnEdge+NbDfOnElement;  int ks=0,ke=0,kt=0;  if(NbDfOnSommet) { nbne+=3;     ks=1;     ndf=NbDfOnSommet;}  if(NbDfOnEdge) {  nbne+=3;     ke=1;     samendf &= !ndf || ndf == NbDfOnEdge;     ndf=NbDfOnEdge;}       if(NbDfOnElement) {  nbne+=1;     kt=1;     samendf &= !ndf || ndf == NbDfOnElement;     ndf=NbDfOnElement;}  int NbDFonNode[7],NodeIsOn[7];   {     int j=0,k=0;     if(ks) { NbDFonNode[j++]=NbDfOnSommet; NbDFonNode[j++]=NbDfOnSommet; NbDFonNode[j++]=NbDfOnSommet;}     if(ke) { NbDFonNode[j++]=NbDfOnEdge; NbDFonNode[j++]=NbDfOnEdge; NbDFonNode[j++]=NbDfOnEdge;}     if(kt) { NbDFonNode[j++]=NbDfOnElement;}     if (ks) {NodeIsOn[k++]=0;NodeIsOn[k++]=1;NodeIsOn[k++]=2;}     if (ke) {NodeIsOn[k++]=3;NodeIsOn[k++]=4;NodeIsOn[k++]=5;}     if (kt) {NodeIsOn[k++]=6;}          throwassert(j == nbne);  }         MaxNbNodePerElement=nbne;//     if ( ks && (!ke && ! kt) && (ndfv==0 && ndfe==0))     {nn=Th.nv;      NodesOfElement=0;      }   else {//    constuction du tableau  NodesOfElement  bofbof //     computation of the length lne of array NodesOfElement               int lne=  Th.nt*nbne;       if (Th.NbMortars)        {          samendf= false;          NbOfNodeL=Th.NbMortars;          throwassert(tm);          FirstNodeOfElement = new int[NbOfElements+1];          int k=0,kk=0;                    for (k=0;k<Th.nt;k++,kk+=nbne)            FirstNodeOfElement[k] = kk;                     for (int im=0;im<Th.NbMortars;im++) // (www) code             {             FirstNodeOfElement[k++]=lne;                        lne += tm->NbOfNodes(Th,Th.mortars[im]);            }          FirstNodeOfElement[k++]=lne;                   }                      NodesOfElement = new int[lne];              for (int i=0;i<lne;i++)          NodesOfElement[i]=-1;       int i=0;       int oe=0;        if(ks) { oe=3;nn=ndfv ? nb_dfv : Th.nv;}              if (ke && ndfe) {         for (int be=0;be<Th.neb;be++)         {          int j,k=Th.BoundaryElement(be,j);          int jj=j;          int kk=Th.ElementAdj(k,jj);          if ( kk >=0 && jj>=0)               NodesOfElement[kk*nbne+oe+jj] = nn + ndfe[be]   ; // adj          NodesOfElement[k*nbne+oe+j]   = nn + ndfe[be]   ; // new                  }         nn += nb_dfe;        }       for (int k=0;k<Th.nt;k++)        {          int iold=i;          if(ks) {            for (int j=0;j<3;j++)             NodesOfElement[i++]= ndfv ?  ndfv[Th(k,j)] : Th(k,j) ;          }          if(ke) {            for (int j=0;j<3;j++)             if (NodesOfElement[i]<0) {               int jj=j;               int kk=Th.ElementAdj(k,jj);                              NodesOfElement[kk*nbne+oe+jj] = nn   ; // adj                  NodesOfElement[i++]           = nn++ ; // new             }  else i++;          }          if(kt)              NodesOfElement[i++]= nn++;         // cout << k ;         // dump(" ",i-iold, NodesOfElement+iold);        }       // cout << i << " " << Th.nt*nbne << endl;        firstmul=nn;        if (Th.NbMortars)          {              //  construction of the mortars element            int * color= new int [firstmul];            //             int thecolor=0;           for (int j=0;j<firstmul;j++)              color[j]=thecolor;                        for (int im=0;im<Th.NbMortars;im++)            {                int iold=i;                      thecolor++; // get a new color             // tm->ConstructionOfNode(Th,im,NodesOfElement,FirstNodeOfElement,nn);               Mortar & M(Th.mortars[im]);              NodesOfElement[i++] = nn++; // the first node is the lag. mul.             int n=M.NbT();             for (int kk=0;kk<n;kk++)             {              int K,e;               K=M.T_e(kk,e);                int kb=FirstNodeOfElement[K];               int ke=FirstNodeOfElement[K+1];                            for (int j=kb,jj=0;j<ke;j++,jj++)                if (onWhatIsEdge[e][NodeIsOn[jj]])                 { // the node jj is on edge e                    int node=NodesOfElement[j];                   // cout << "." << jj << " K=" << K <<" "<<e << " n=" << node ;                    throwassert(node<firstmul);                    if (color[node] != thecolor) //  new node => adding                     {                     //   cout << "a, ";                       color[node] = thecolor;                       NodesOfElement[i++] = node;                     }                   // else cout << ", ";                 }               }               //cout << endl;                              //cout << im ;               //dump(": ",i-iold, NodesOfElement+iold);               throwassert(i==FirstNodeOfElement[im+Th.nt+1]);              }             delete [] color;          }         else          throwassert(i==Th.nt*nbne);        NbOfNode=nn;                           }  NbOfNode=nn;    int NbOfDFL=0;     if (! samendf)        { throwassert(NodesOfElement);         FirstDfOfNode= new int [nn+1];         for (int i=0;i<=nn;i++) FirstDfOfNode[i]=-1;          int i=0;         //  the classical part (FEM)         for (int k=0;k<Th.nt;k++)           for (int j=0;j<nbne;j++) // thanks to student             FirstDfOfNode[ NodesOfElement[i++]+1]=NbDFonNode[j];         //  the mortars parts juste the mulplicator                   for (int km=0,k=Th.nt;km<Th.NbMortars;km++,k++)             {  //  the lag. mult. is the first node of the mortar --              throwassert(FirstNodeOfElement);              //  hack               int fk=FirstNodeOfElement[k];              int lk=FirstNodeOfElement[k+1];              int ndlmul = tm->NbLagrangeMult(Th,Th.mortars[km]);  //  On node par               int nodemul = NodesOfElement[fk]; // the first node is the lagr. mul.              throwassert(FirstDfOfNode[nodemul+1]==-1);                    FirstDfOfNode[nodemul+1]= ndlmul;              NbOfDFL += ndlmul;              int nbdle=0;              int nbnm=lk-fk;              for (int j=fk;j<lk;j++)               nbdle+=FirstDfOfNode[NodesOfElement[j]+1];              MaxNbDFPerElement = Max(MaxNbDFPerElement,nbdle);            }                      FirstDfOfNode[0]=0;         for (int i=0;i<=nn;i++) throwassert(FirstDfOfNode[i]!=-1);          for (int i=0;i<nn;i++)               FirstDfOfNode[i+1] += FirstDfOfNode[i] ;           NbOfDF=  FirstDfOfNode[nn];               }    else       {         NbOfDF = nn*ndf;          Nproduit = ndf;               }   MaxNbNodePerElement=nbne;      cout << " Nb Of Nodes = " << nn << endl;      if(NbOfNodeL)             cout << " Nb of Lagrange Mul Node = " << NbOfNodeL << endl;           cout << " Nb of DF = " << NbOfDF << endl;      if(NbOfDFL) {       cout << " Nb of Lagrange Mul DF = "   << NbOfDFL << endl;       cout << " MaxNbDFPerElement     =   " << MaxNbDFPerElement << endl;   };}FESpace::FESpace(const FESpace & Vh,int k ) :     ptrTFE(new TypeOfFEProduit(k,*Vh.TFE[0])),     TFE(1,0,ptrTFE),     cmesh(Vh.Th),     cdef(Vh.cdef?new ConstructDataFElement(Vh.cdef,k):0),     N(Vh.N*k),     Nproduit(Vh.Nproduit*k),     nb_sub_fem(TFE[0]->nb_sub_fem),     dim_which_sub_fem(TFE[0]->dim_which_sub_fem),          Th(Vh.Th),     NbOfDF(Vh.NbOfDF*k),     NbOfElements(Vh.NbOfElements),     NbOfNodes(Vh.NbOfNodes),     MaxNbNodePerElement(Vh.MaxNbNodePerElement),     MaxNbDFPerElement(Vh.MaxNbDFPerElement*k),     NodesOfElement(Vh.NodesOfElement),     FirstDfOfNodeData(cdef?cdef->FirstDfOfNode:0),     FirstNodeOfElement(Vh.FirstNodeOfElement),     tom(0) {     if(cdef) renum();} FESpace::FESpace(const FESpace ** Vh,int k ) :     ptrTFE(new TypeOfFESum(Vh,k)),     TFE(1,0,ptrTFE),     cmesh((**Vh).Th),     cdef(new ConstructDataFElement(Vh,k)),     N(sum(Vh,&FESpace::N,k)),     Nproduit(cdef->Nproduit),          nb_sub_fem(TFE[0]->nb_sub_fem),     dim_which_sub_fem(TFE[0]->dim_which_sub_fem),     Th((**Vh).Th),     NbOfDF(cdef->NbOfDF),     NbOfElements(cdef->NbOfElements),     NbOfNodes(cdef->NbOfNode),     MaxNbNodePerElement(cdef->MaxNbNodePerElement),     MaxNbDFPerElement(cdef->MaxNbDFPerElement),     NodesOfElement(cdef->NodesOfElement),     FirstDfOfNodeData(cdef->FirstDfOfNode),     FirstNodeOfElement(cdef->FirstNodeOfElement),     tom(0) {     if(cdef) renum(); }     FESpace::FESpace(const Mesh & TTh,const TypeOfFE ** tef,int k,int nbdfv,const int *ndfv,int nbdfe,const int *ndfe ) :     ptrTFE(new TypeOfFESum(tef,k)),     TFE(1,0,ptrTFE),     cmesh(TTh),     cdef(new ConstructDataFElement(TTh,sum(tef,&TypeOfFE::NbDfOnVertex,k),                                        sum(tef,&TypeOfFE::NbDfOnEdge,k),                                        sum(tef,&TypeOfFE::NbDfOnElement,k),                                        0,nbdfv,ndfv,nbdfe,ndfe)),     N(sum(tef,&TypeOfFE::N,k)),     Nproduit(cdef->Nproduit),          nb_sub_fem(TFE[0]->nb_sub_fem),     dim_which_sub_fem(TFE[0]->dim_which_sub_fem),     Th(TTh),     NbOfDF(cdef->NbOfDF),     NbOfElements(cdef->NbOfElements),     NbOfNodes(cdef->NbOfNode),     MaxNbNodePerElement(cdef->MaxNbNodePerElement),     MaxNbDFPerElement(cdef->MaxNbDFPerElement),     NodesOfElement(cdef->NodesOfElement),     FirstDfOfNodeData(cdef->FirstDfOfNode),     FirstNodeOfElement(cdef->FirstNodeOfElement),     tom(0) {     if(cdef) renum(); } FESpace::FESpace(const Mesh & TTh,const TypeOfFE & tef,int nbdfv,const int *ndfv,int nbdfe,const int *ndfe)   :       ptrTFE(0),     TFE(1,0,&tef),     cmesh(TTh),     cdef(new ConstructDataFElement(TTh,tef.NbDfOnVertex,tef.NbDfOnEdge,tef.NbDfOnElement,0,nbdfv,ndfv,nbdfe,ndfe)),     N(tef.N),     Nproduit(cdef->Nproduit),     nb_sub_fem(TFE[0]->nb_sub_fem),     dim_which_sub_fem(TFE[0]->dim_which_sub_fem),     Th(TTh),     NbOfDF(cdef->NbOfDF),     NbOfElements(cdef->NbOfElements),     NbOfNodes(cdef->NbOfNode),     MaxNbNodePerElement(cdef->MaxNbNodePerElement),     MaxNbDFPerElement(cdef->MaxNbDFPerElement),     NodesOfElement(cdef->NodesOfElement),     FirstDfOfNodeData(cdef->FirstDfOfNode),     FirstNodeOfElement(cdef->FirstNodeOfElement),     tom(0) {     if(tef.NbDfOnVertex || tef.NbDfOnEdge) renum();     }      FESpace::~FESpace()   {     SHOWVERB(cout << " FESpace::~FESpace() " << endl);      delete  cdef;      if(ptrTFE)         delete  ptrTFE;   } FESpace::FESpace(const Mesh & TTh,const TypeOfFE & tef,const TypeOfMortar & tm)   :       ptrTFE(0),     TFE(1,0,&tef),     cmesh(TTh),     cdef(new ConstructDataFElement(TTh,tef.NbDfOnVertex,tef.NbDfOnEdge,tef.NbDfOnElement,&tm)),     N(tef.N),     Nproduit(1),     nb_sub_fem(TFE[0]->nb_sub_fem),     dim_which_sub_fem(TFE[0]->dim_which_sub_fem),          Th(TTh),     NbOfDF(cdef->NbOfDF),     NbOfElements(cdef->NbOfElements),     NbOfNodes(cdef->NbOfNode),     MaxNbNodePerElement(cdef->MaxNbNodePerElement),     MaxNbDFPerElement(cdef->MaxNbDFPerElement),     NodesOfElement(cdef->NodesOfElement),     FirstDfOfNodeData(cdef->FirstDfOfNode),     FirstNodeOfElement(cdef->FirstNodeOfElement),     tom(&tm) {      // cout << "avant renum ="<< *this <<endl;       renum();     // cout << "apres renum ="<< *this <<endl;     }     void ConstructDataFElement::renum(const long *r,int l)    { /*   cout << "renu=" << l << ":" << endl;   for (int i=0;i<NbOfNode;i++)      if (i%10) cout << r[i] << "\t";      else cout << "\n " << i << ":\t" << r[i] << "\t";      cout << endl; */   throwassert(this);   if (NodesOfElement)      for (int i=0;i< l ; i++)       NodesOfElement[i]=r[NodesOfElement[i]];   if(FirstDfOfNode)      { int k,i,*n=new int[NbOfNode];      for ( i=0;i<NbOfNode;i++)                 n[r[i]]=FirstDfOfNode[i+1]-FirstDfOfNode[i];       FirstDfOfNode[0]=k=0;      for(i=0;i< NbOfNode;)        {k+=n[i];         FirstDfOfNode[++i]=k;}       delete [] n;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -