📄 bilap.edp
字号:
int n=100,nn=n+10;real[int] xx(nn),yy(nn);mesh Th=square(40,40); // mesh definition of $\Omega$fespace Vh(Th,P1); // finite element spacemacro laplacien(u,v) (dx(u)*dx(v)+dy(u)*dy(v)) // fin macro real f=1;Vh u,uu,v,vv;solve bilap([u,uu],[v,vv],solver=LU,eps=1.0e-6) = int2d(Th)( laplacien(u,vv)+uu*vv // - Delta u + uu =0 (vv) + laplacien(uu,v) ) // - Delta uu = 1 (v) - int2d(Th)(f*v) + on(1,2,3,4,u=0); // => v=0 also on 1,2,3,4 plot(u,wait=1);for (int i=0;i<=n;i++) { xx[i]=real(i)/n; yy[i]=u(0.5,real(i)/n); // value of uh at point (0.5, i/10.) } plot([xx(0:n),yy(0:n)],wait=1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -