📄 stokes-eigen.edp
字号:
// remark: the sign of p is correct real s0=clock();mesh Th=square(20,20);fespace Xh(Th,P2);fespace Mh(Th,P1);fespace XhxXhxMh(Th,[P2,P2,P1]);Xh u1,u2;Mh p;real alpha=0;real nu=1;int i=0,iter=0;varf vfStokes ([u1,u2,p],[v1,v2,q]) = int2d(Th)( alpha*( u1*v1 + u2*v2) + nu * ( dx(u1)*dx(v1) + dy(u1)*dy(v1) + dx(u2)*dx(v2) + dy(u2)*dy(v2) ) + p*q*(0.000001) - p*dx(v1) - p*dy(v2) - dx(u1)*q - dy(u2)*q ) + on(1,2,3,4,u1=0,u2=0) ;varf b([u1,u2,p],[v1,v2,q]) = int2d(Th)( u1*v1+u2*v2+p*q*0.) ; // no Boundary conditionmatrix A= vfStokes(XhxXhxMh,XhxXhxMh,solver=Crout,factorize=1); matrix B= b(XhxXhxMh,XhxXhxMh,solver=CG,eps=1e-20); real sigma=0;int nev=20; // number of computed eigen valeu close to sigmareal[int] ev(nev); // to store nev eigein valueXhxXhxMh[int] [eu1,eu2,ep](nev); // to store nev eigen vectorint k=EigenValue(A,B,sym=true,sigma=sigma,value=ev,vector=eu1,tol=1e-10,maxit=0,ncv=0);for (int i=0;i<k;i++){ cout << " valeur propre : " << i << " : " << ev[i] << endl; u1=eu1[i]; u2=eu2[i]; p=ep[i]; plot([u1,u2],p,cmm="Eigen Vector "+i+" valeur =" + ev[i] ,wait=1,value=1,ps="Stokes-eigen"+i+".eps");}cout << "CPU " << clock()-s0 << "s " << endl; assert(abs(ev[0]-52.3471) < 0.1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -