⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bb.edp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 EDP
字号:
//  Computation of the eigen value and eigen vector of the // Dirichlet problem  on square $]0,\pi[^2$// ----------------------------------------// we use the inverse shift mode // the shift is given with sigma real// -------------------------------------//  find $\lamda$ such that:// $$  \int_{\omega}  \nabla u_ \nabla v = \lamba \int_{\omega} u \nabla v  $$verbosity=1;mesh Th=square(20,20,[pi*x,pi*y]);fespace Vh(Th,P2);Vh u1,u2;real sigma = 00;  // value of the shift varf  a(u1,u2)= int2d(Th)(  dx(u1)*dx(u2) + dy(u1)*dy(u2) - sigma* u1*u2 )                    +  on(1,2,3,4,u1=0) ;  // Boundary condition                   varf b([u1],[u2]) = int2d(Th)(  u1*u2 ) ; // no  Boundary conditionmatrix A= a(Vh,Vh,solver=CG,factorize=0); matrix B= b(Vh,Vh,solver=CG,eps=1e-20); // important remark:// the boundary condition is make with exact penalisation://     we put 1e30=tgv  on the diagonal term of the lock degre of freedom.//  So take dirichlet boundary condition just on $a$ variationnal form// and not on  $b$ variationnanl form.// because we solve//  $$ w=A^-1*B*v $$int nev=20;  // number of computed eigen valeu close to sigmareal[int] ev(nev); // to store nev eigein valueVh[int] eV(nev);   // to store nev eigen vectorint k=EigenValue(A,B,sym=true,sigma=sigma,value=ev,vector=eV,tol=1e-10,maxit=0,ncv=0);//   tol= the tolerace//   maxit= the maximal iteration see arpack doc.//   ncv   see arpack doc.//  the return value is number of converged eigen value.for (int i=0;i<k;i++){  u1=eV[i];  real gg = int2d(Th)(dx(u1)*dx(u1) + dy(u1)*dy(u1));  real mm= int2d(Th)(u1*u1) ;  cout << " ---- " <<  i<< " " << ev[i]<< " err= "        <<int2d(Th)(dx(u1)*dx(u1) + dy(u1)*dy(u1) - (ev[i])*u1*u1) << " --- "<<endl;  plot(eV[i],cmm="Eigen  Vector "+i+" valeur =" + ev[i]  ,wait=1,value=1,ps="eigen"+i+".eps");}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -