📄 lame.edp
字号:
// file lame.eddmesh Th=square(10,10,[20*x,2*y-1]);fespace Vh(Th,P2);Vh u,v,uu,vv;real sqrt2=sqrt(2.);macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM// remark the $1/\sqrt2$ in term (dy(u1)+dx(u2)) is because // we want: // epsilon(u1,u2)'* epsilon(v1,v2) == $ \varepsilon(\bm{u}): varepsilon(\bm{v})$macro div(u,v) ( dx(u)+dy(v) ) // EOMreal E = 21e5, nu = 0.28, mu= E/(2*(1+nu)); real lambda = E*nu/((1+nu)*(1-2*nu)), f = -1; // solve lame([u,v],[uu,vv])= int2d(Th)( lambda*div(u,v)*div(uu,vv) +2.*mu*( epsilon(u,v)'*epsilon(uu,vv) ) ) - int2d(Th)(f*vv) + on(4,u=0,v=0);real coef=100;plot([u,v],wait=1,ps="lamevect.eps",coef=coef);mesh th1 = movemesh(Th, [x+u*coef, y+v*coef]); plot(th1,wait=1,ps="lamedeform.eps");real dxmin = u[].min; real dymin = v[].min; cout << " - dep. max x = "<< dxmin<< " y=" << dymin << endl; cout << " dep. (20,0) = " << u(20,0) << " " << v(20,0) << endl;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -