⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 algo.edp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 EDP
字号:
//  cleanning version 07/2008  FH in Sevilla.real umax=0;{  // minimisation of $J(u) = \frac12\sum (i+1) u_i^2 - b_i $	  // work array   real[int] b(10),u(10);     func real J(real[int] & u)    {      real s=0;      for (int i=0;i<u.n;i++)	s +=(i+1)*u[i]*u[i]*0.5 - b[i]*u[i];      cout << "J ="<< s << " u =" <<  u[0] << " " << u[1] << "...\n" ;      return s;    }//  the grad of J (this is a affine version (the RHS is in  )  func real[int] DJ(real[int] &u)    {       for (int i=0;i<u.n;i++)	u[i]=(i+1)*u[i]-b[i];      return u;  // return of global variable ok     };// the grad of the bilinear part of J (the RHS in remove)  func real[int] DJ0(real[int] &u)    {       for (int i=0;i<u.n;i++)	u[i]=(i+1)*u[i];      return u;  // return of global variable ok     };  func real error(real[int] & u,real[int] & b)   {   real s=0;     for (int i=0;i<u.n;i++)	s += abs((i+1)*u[i] - b[i]);   return s;       }  func real[int] matId(real[int] &u) { return u;};    b=0.; u=0.; // set  right hand side and initial gest  LinearCG(DJ,u,eps=1.e-6,nbiter=20,precon=matId);  cout << "LinearCG (Affin)  : J(u) = " << J(u) << " err=" << error(u,b) << endl;  assert(error(u,b) < 1e-5);  b=1; u=0; // set  right hand side and initial gest  LinearCG(DJ0,u,b,eps=1.e-6,nbiter=20,precon=matId);  cout << "LinearCG (Linear) : J(u) = " << J(u) << " err=" << error(u,b) << endl;  assert(error(u,b) < 1e-5);  b=1; u=0; // set  right hand side and initial gest //   LinearGMRES(DJ,u,eps=1.e-6,nbiter=20,precon=matId); // bug don't work compile error v1.44  LinearGMRES(DJ0,u,b,eps=1.e-6,nbiter=20,precon=matId);  cout << "LinearGMRES: J(u) = " << J(u) << " err=" << error(u,b) << endl;  assert(error(u,b) < 1e-5);  b=1; u=0; // set  right hand side and initial gest  NLCG(DJ,u,eps=1.e-6,nbiter=20,precon=matId);  cout << "NLCG: J(u) = " << J(u) << " err=" << error(u,b) << endl;  assert(error(u,b) < 1e-5);  // warning BFGS use a full matrix of size nxn (where n=u.n)   b=1; u=2; // set  right hand side and initial gest  BFGS(J,DJ,u,eps=1.e-6,nbiter=20,nbiterline=20);   cout << "BFGS: J(u) = " << J(u) << " err=" << error(u,b) << endl;  assert(error(u,b) < 1e-5);  };{ // ---  a real non linear test ---mesh Th=square(10,10);  // mesh definition of $\Omega$fespace Vh(Th,P1);      // finite element spacefespace Ph(Th,P0);      // make optimizationVh b=1;  // to defined b // $ J(u) = 1/2\int_\Omega f(|\nabla u|^2) - \int\Omega  u b $// $ f(u) = a*u + u-ln(1+u), \quad f'(u) = a+\frac{u}{1+u}, \quad f''(u) =  \frac{1}{(1+u)^2}$real a=0.001;func real f(real u) { return u*a+u-log(1+u); }func real df(real u) { return a+u/(1+u);}func real ddf(real u) { return 1/((1+u)*(1+u));}// the functionnal J func real J(real[int] & u)  {    Vh w;w[]=u;     real r=int2d(Th)(0.5*f( dx(w)*dx(w) + dy(w)*dy(w) ) - b*w) ;    cout << "J(u) =" << r << " " << u.min <<  " " << u.max << endl;    return r;  }// -----------------------Vh u=0; //  the current value of the solutionPh alpha; // of store  $df(|\nabla u|^2)$int iter=0;alpha=df( dx(u)*dx(u) + dy(u)*dy(u) ); // optimization func real[int] dJ(real[int] & u)  {    int verb=verbosity; verbosity=0;     Vh w;w[]=u;     alpha=df( dx(w)*dx(w) + dy(w)*dy(w) ); // optimization     varf au(uh,vh) = int2d(Th)( alpha*( dx(w)*dx(vh) + dy(w)*dy(vh) ) - b*vh)    + on(1,2,3,4,uh=0);    u= au(0,Vh);      verbosity=verb;    return u; // warning no return of local array    }varf alap(uh,vh)=     int2d(Th)( alpha *( dx(uh)*dx(vh) + dy(uh)*dy(vh) ))   + on(1,2,3,4,uh=0);varf amass(uh,vh)=  int2d(Th)( uh*vh)  + on(1,2,3,4,uh=0);matrix Amass = amass(Vh,Vh,solver=CG);matrix Alap=  alap(Vh,Vh,solver=Cholesky,factorize=1);   func real[int] C(real[int] & u){   real[int] w=Amass*u;   u = Alap^-1*w;   return u; // no return of local array  variable }   verbosity=5;   int conv=0;   real eps=1e-6;    for(int i=0;i<20;i++)   {     conv=NLCG(dJ,u[],nbiter=10,precon=C,veps=eps);      if (conv) break;      alpha=df( dx(u)*dx(u) + dy(u)*dy(u) ); // optimization      Alap = alap(Vh,Vh,solver=Cholesky,factorize=1);        cout << " restart with new preconditionner " << conv << " eps =" << eps << endl;   }   plot (u,wait=1,cmm="solution with NLCG");   umax = u[].max;    Vh sss= df( dx(u)*dx(u) + dy(u)*dy(u) ) ;   plot (sss,wait=0,fill=1,value=1);// the  method of  Newton Ralphson to solve dJ(u)=0;//  see Newton.edp example}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -