⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 newton.edp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 EDP
字号:
{ // ---  a real non linear test ---mesh Th=square(10,10);  // mesh definition of $\Omega$Th = adaptmesh(Th,0.05,IsMetric=1,splitpbedge=1);//plot(Th,wait=1);//Th = adaptmesh(Th,0.1,IsMetric=1,splitpbedge=1);plot(Th,wait=0);fespace Vh(Th,P1);      // finite element spacefespace Ph(Th,P1dc);      // make optimization Vh b=1;  // to defined b // $ J(u) = 1/2 \int_\Omega f(|\nabla u|^2) - \int\Omega  u b $// $ f(x) = a*x + x-ln(1+x), \quad f'(x) = a+\frac{x}{1+x}, \quad f''(x) =  \frac{1}{(1+x)^2}$real a=0.001;func real f(real u) { return u*a+u-log(1+u); }func real df(real u) { return a+u/(1+u);}func real ddf(real u) { return 1/((1+u)*(1+u));}Vh u=0; //  the current value of the solutionPh alpha; // to store  $ (|\nabla u|^2)$Ph dfalpha; // to store  $f' (|\nabla u|^2)$Ph ddfalpha ; //to store = $2 f''( |\nabla u|^2) $  optimisationint iter=0;//   methode of  Newton Ralphson to solve dJ(u)=0;//    $$ u^{n+1} = u^n - (\frac{\partial dJ}{\partial u_i})^{-1}*dJ(u^n) $$ //   ---------------------------------------------  // the variationnal form of evaluate  dJ   // --------------------------------------  //  dJ =  f'()*( dx(u)*dx(vh) + dy(u)*dy(vh)   varf vdJ(uh,vh) =  int2d(Th)( dfalpha*( dx(u)*dx(vh) + dy(u)*dy(vh) ) - b*vh)  + on(1,2,3,4, uh=0);  // the variationnal form of evaluate  ddJ     // hJ(uh,vh) =  f'()*( dx(uh)*dx(vh) + dy(uh)*dy(vh)  //            + f''()( dx(u)*dx(uh) + dy(u)*dy(uh) ) * (dx(u)*dx(vh) + dy(u)*dy(vh))   varf vhJ(uh,vh) = int2d(Th)( dfalpha*( dx(uh)*dx(vh) + dy(uh)*dy(vh) )   +  ddfalpha*( dx(u)*dx(vh) + dy(u)*dy(vh)  )*( dx(u)*dx(uh) + dy(u)*dy(uh) ) )   + on(1,2,3,4, uh=0);    // the newton algorithm    Vh v,w;   u=0;  for (int i=0;i<100;i++)   {    alpha = dx(u)*dx(u) + dy(u)*dy(u);// optimization    dfalpha = df( alpha ) ; // optimization    ddfalpha = 2*ddf(alpha ) ; // optimization    v[]= vdJ(0,Vh);    real res= v[]'*v[];    cout << i <<  " residu^2 = " <<  res  << endl;    matrix H;    if( res< 1e-12) break;    H= vhJ(Vh,Vh,factorize=1,solver=LU);    w[]=H^-1*v[];    u[] -= w[];    plot (u,wait=0,cmm="solution with Newton Raphson");   }   savemesh(Th,"N",[x,y,u*1.5]);	{ ofstream file("N.bb");	file << "2 1 1 "<< u[].n << " 2 \n";	int j;	for (j=0;j<u[].n ; j++)  	  file << u[][j] << endl;     }  	    exec("ffmedit N");    exec("rm N.*");    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -