⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adaptindicatorp2.edp

📁 FreeFem++可以生成高质量的有限元网格。可以用于流体力学
💻 EDP
字号:
border ba(t=0,1.0){x=t;   y=0;  label=1;}; // comment border bb(t=0,0.5){x=1;   y=t;  label=2;};border bc(t=0,0.5){x=1-t; y=0.5;label=3;};border bd(t=0.5,1){x=0.5; y=t;  label=4;};border be(t=0.5,1){x=1-t; y=1;  label=5;};border bf(t=0.0,1){x=0;   y=1-t;label=6;};mesh Th = buildmesh (ba(6) + bb(4) + bc(4) +bd(4) + be(4) + bf(6));savemesh(Th,"th.msh");fespace Vh(Th,P2);fespace Nh(Th,P0);Vh u,v;Nh rho,logrho;real[int] viso(21);for (int i=0;i<viso.n;i++)  viso[i]=10.^(+(i-16.)/2.);real error=0.01;func f=(x-y);problem Probem1(u,v,solver=CG,eps=1.0e-6) =    int2d(Th,qforder=5)( u*v*1.0e-10+  dx(u)*dx(v) + dy(u)*dy(v))   + int2d(Th,qforder=10)( -f*v);/*  $$\eta_{K} =\left(  h_{K}^{2} || f -\Delta u_{{h}} ||_{L^{2}(K)}^{2} +\sum_{e\in \AK} h_{e} \,||\, [ \frac{\partial u_{h}}{\partial n_{k}}] \,||^{2}_{L^{2}(e)} \right)^{\frac{1}{2}}   $$ $$ \rho_{K}= \left( || f -\Delta u_{{h}} ||_{L^{2}(K)}^{2} +\sum_{e\in \AK} \frac{1}{h_{e}} \,||\, [ \frac{\partial u_{h}}{\partial n_{k}}] \,||^{2}_{L^{2}(e)} \right)^{\frac{1}{2}} $$*/varf indicator2(uu,chiK) =      intalledges(Th)(chiK*lenEdge*square(jump(N.x*dx(u)+N.y*dy(u))))    +int2d(Th)(chiK*square(hTriangle*(f+dxx(u)+dyy(u))) );for (int i=0;i< 4;i++){     Probem1;    cout << u[].min << " " << u[].max << endl;    plot(u,wait=1);   cout << " indicator2 " << endl;      rho[] = indicator2(0,Nh);   rho=sqrt(rho);   logrho=log10(rho);   cout << "rho =   min " << rho[].min << " max=" << rho[].max << endl;   plot(rho,fill=1,wait=1,cmm="indicator density ",ps="rhoP2.eps",value=1,viso=viso,nbiso=viso.n);   plot(logrho,fill=1,wait=1,cmm="log 10 indicator density ",ps="logrhoP2.eps",value=1,nbiso=10);   plot(Th,wait=1,cmm="Mesh ",ps="ThrhoP2.eps");   Th=adaptmesh(Th,[dx(u),dy(u)],err=error,anisomax=1);   plot(Th,wait=1);   u=u;   rho=rho;  error = error/2;} ;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -