📄 ucos-ii源码分析.c
字号:
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 /* 0xF0 to 0xFF */
};
OSMapTbl分别是一个INT8U的八个位,而OSUnMap数组中的值就是从0x00到0xFF的八位中,每一个值所对应的最低位的值。我们在调度的时候只需将OSRdyGrp的值代入OSUnMapTbl数组中,得到OSUnMapTbl[OSRdyGrp]的值就是哪个优先级最高的Group有Ready进程存在,再使用该Group对应OSRdyTbl[]数组中的值一样带入OSUnMapTbl中就可以得出哪个Task是优先级最高的。
于是我们提前来看看OS_Sched()中获取最高优先级所使用的方法:
y = OSUnMapTbl[OSRdyGrp]; /* Get pointer to HPT ready to run */
OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
显然,先得到的y就是存在最高优先级的Group,然后OSUnMapTbl[OSRdyTbl[y]]就是Group中的偏移,因此OSPrioHighRdy最高优先级就应该是Group<<3再加上这个偏移。
于是乎,我们就可以对上面那一小段很模糊的代码做一下总结:
prio只有6位,高3位代表着某一个Group保存在OSTCBY中,OSTCBBitY表示该Group所对应的Bit,将OSRdyGrp的该位置1表示该Group中有进程是Ready的;低3位代表着该Group中的第几个进程,保存在OSTCBX中,OSTCBBitX表示该进程在该Group中所对应的Bit,OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX就等于将该进程所对应的Bit置1了。
OSStart
OK,接下来我们来看这个开始函数了。OSStart其实很短,只有匆匆几句代码:
void OSStart (void)
{
INT8U y;
INT8U x;
if (OSRunning == FALSE) {
y = OSUnMapTbl[OSRdyGrp]; /* Find highest priority's task priority number */
x = OSUnMapTbl[OSRdyTbl[y]];
OSPrioHighRdy = (INT8U)((y << 3) + x);
OSPrioCur = OSPrioHighRdy;
OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy]; /* Point to highest priority task ready to run */
OSTCBCur = OSTCBHighRdy;
OSStartHighRdy(); /* Execute target specific code to start task */
}
}
如果OSRunning为TRUE,表示OS已经在运行了,则OSStart不做任何事。
OSRunning为FALSE,则找出最高优先级的Ready的Task,并将该指针赋给OSTCBHighRdy和OSTCBCur。然后调用OSStartHighRdy()开始运行该进程。
OSStartHighRdy()为用户自定义函数,在这个函数中,主要功能就是进行堆栈切换并将OSRunning设置为TRUE表示OS已经开始运行,然后将保存的寄存器弹出,最后执行中断返回指令IRET就跳到OSTCBHighRdy的最开始处运行了。
OSTimeDly
在Task中,一般执行一段时间之后调用OSTimeDly推迟一段时间再继续运行,OSTimeDly将本进程从Ready TCBList中删除,然后将Delay的时间设置给OSTCBDly,最后调用OS_Sched进行进程调度。
void OSTimeDly (INT16U ticks)
{
INT8U y;
if (ticks > 0) { /* 0 means no delay! */
OS_ENTER_CRITICAL();
y = OSTCBCur->OSTCBY; /* Delay current task */
OSRdyTbl[y] &= ~OSTCBCur->OSTCBBitX;
if (OSRdyTbl[y] == 0) {
OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
}
OSTCBCur->OSTCBDly = ticks; /* Load ticks in TCB */
OS_EXIT_CRITICAL();
OS_Sched(); /* Find next task to run! */
}
}
如果ticks为零,说明不需延迟,则什么事情都不做。否则,调用OS_ENTER_CRITICAL进入临界段,将本进程从Ready TCBList中删除的代码如下:
y = OSTCBCur->OSTCBY; /* Delay current task */
OSRdyTbl[y] &= ~OSTCBCur->OSTCBBitX;
if (OSRdyTbl[y] == 0) {
OSRdyGrp &= ~OSTCBCur->OSTCBBitY;
}
y为当前进程所在Group,OSRdyTbl[y]为该Group所在字节,&=~则将该字节中本进程所占用的Bit清零。如果OSRdyTbl[y]为0,则说明这个Group中没有进程处于Ready状态,则将OSRdyGrp中该Group所占用的Bit清零。
然后将ticks保存在OSTCBDly中,每次OSTimeTick运行时会将这个值减一直至为零。
调用OS_EXIT_CRITICAL离开临界段,紧接着调用OS_Sched进入调度例程。
OS_Sched
OS_Sched是进程调度所使用的函数,在这里面找到最高优先级的进程,然后切换到该进程运行。
void OS_Sched (void)
{
INT8U y;
OS_ENTER_CRITICAL();
if (OSIntNesting == 0) { /* Schedule only if all ISRs done and ... */
if (OSLockNesting == 0) { /* ... scheduler is not locked */
y = OSUnMapTbl[OSRdyGrp]; /* Get pointer to HPT ready to run */
OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
if (OSPrioHighRdy != OSPrioCur) { /* No Ctx Sw if current task is highest rdy */
OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
OSCtxSwCtr++; /* Increment context switch counter */
OS_TASK_SW(); /* Perform a context switch */
}
}
}
OS_EXIT_CRITICAL();
}
OS_Sched不允许在中断嵌套中调用,因此先判断是否是中断嵌套,并且是否限制进程调度,这两个条件都满足之后,找到最高优先级的进程,如果这个进程不是当前进程,则将新的进程TCB指针保存到OSTCBHighRdy中,为调度计数器OSCtxSwCtr加一,然后调用宏OS_TASK_SW()进行切换。
OS_TASK_SW()宏也是一个自定义的宏,uC/OS-II推荐使用软中断方式实现。
OSCtxSw是一个中断响应函数,一般我们在初始化时将这个软终端和OSCtxSw挂接好。在OSCtxSw中所需要做的事情就是将当前寄存器的值保存到当前堆栈中,然后切换堆栈到新进程的堆栈,将寄存器的值出栈,然后调用中断返回指令IRET就返回到新进程中断前的地方继续执行了。
定时中断
uC/OS-II的定时中断必须在OSStart之后初始化,而不能在OSStart之前,因为害怕第一个TimeTick发生时第一个进程还没有开始运行,而这时uC/OS是处于不可预期状态,会导致死机。
因此对于定时中断,我一般是放在最高级进程的初始化中进行,然后将定时中断和OSTickISR挂接。
OSTickISR也是一个用户自定义函数,所要完成的功能一个是保存当前的寄存器到当前堆栈将OSIntNesting加一,然后调用uC/OS提供的OSTimeTick函数,然后调用OSIntExit()将OSIntNesting减一,最后将各寄存器值出栈,使用中断返回指令IRET返回。
OSTimeTick在每个时钟中断中被调用一次,在该函数中会更新各个进程TCB所对应的OSTCBDly,如果该OSTCBDly减为0,则对应的TCB就被放入Ready TCBList中。
OS_ENTER_CRITICAL(); /* Update the 32-bit tick counter */
OSTime++;
OS_EXIT_CRITICAL();
ptcb = OSTCBList; /* Point at first TCB in TCB list */
while (ptcb->OSTCBPrio != OS_IDLE_PRIO) { /* Go through all TCBs in TCB list */
OS_ENTER_CRITICAL();
if (ptcb->OSTCBDly != 0) { /* No, Delayed or waiting for event with TO */
if (--ptcb->OSTCBDly == 0) { /* Decrement nbr of ticks to end of delay */
/* Check for timeout */
if ((ptcb->OSTCBStat & OS_STAT_PEND_ANY) != OS_STAT_RDY) {
ptcb->OSTCBStat &= ~OS_STAT_PEND_ANY; /* Yes, Clear status flag */
ptcb->OSTCBPendTO = TRUE; /* Indicate PEND timeout */
} else {
ptcb->OSTCBPendTO = FALSE;
}
if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) { /* Is task suspended? */
OSRdyGrp |= ptcb->OSTCBBitY; /* No, Make ready */
OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
}
}
}
ptcb = ptcb->OSTCBNext; /* Point at next TCB in TCB list */
OS_EXIT_CRITICAL();
}
首先在临界段将OSTime加一,然后遍历整个非Free的TCBList,如果OSTCBDly不为0,则,将OSTCBDly减一,如果这时OSTCBDly为0,而且TCB对应的进程需要等待任何信号量或Event等,则说明超时时间到了,将当前TCB的State中OS_STAT_PEND_ANY位去掉,然后将OSTCBPendTo设置为TRUE,表示这是PEND的超时,否则设置OSTCBPendTO为FALSE。
如果OSTCBDly减为零,且该进程没有Suspend,则将该进程放入Ready TCBList中,使用方法同TaskCreate中的方法。
然后我们来说说OSIntExit这个函数。该函数代码如下:
void OSIntExit (void)
{
INT8U y;
if (OSRunning == TRUE) {
OS_ENTER_CRITICAL();
if (OSIntNesting > 0) { /* Prevent OSIntNesting from wrapping */
OSIntNesting--;
}
if (OSIntNesting == 0) { /* Reschedule only if all ISRs complete ... */
if (OSLockNesting == 0) { /* ... and not locked. */
y = OSUnMapTbl[OSRdyGrp];
OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]);
if (OSPrioHighRdy != OSPrioCur) { /* No Ctx Sw if current task is highest rdy */
OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
OSCtxSwCtr++; /* Keep track of the number of ctx switches */
OSIntCtxSw(); /* Perform interrupt level ctx switch */
}
}
}
OS_EXIT_CRITICAL();
}
}
首先判断OSRunning是否为1,也就是OS是否在运行,当然没有运行就什么都不做。
然后将OSIntNesting减一,这个是需要在临界段进行的。如果OSIntNesting减为零,并且没有限制进程切换,则找到当前最高优先级的进程(方法同OS_Sched()),然后调用OSIntCtxSw进行进程切换。
OSIntCtxSw()是用户自定义函数,该函数的主要功能与OSCtxSw类似,只是需要对当前的堆栈进行稍微的调整,将OSIntExit和OSIntCtxSw调用所需要的堆栈去掉,然后做的和OSCtxSw一样。
在实际的Porting中发现要去掉OSIntExit和OSIntCtxSw调用所占用的堆栈还是比较麻烦的,因此我就现在OSTickISR刚开始的时候保存好现场之后就将堆栈指针赋给当前进程TCB的OSStkPtr,这样,在OSIntCtxSw中就不需要重新对当前堆栈的值进行保存,只需进行切换就可以了。
OK,到这里应该对uC/OS的运行机制有一点点理解了,我们的分析之旅告个段落。以后如果有兴趣我们再继续对Event、信号量等等之类的分模块进行分析。
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -