⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mathalib.html

📁 vxworks相关论文
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<p>The largest integral value less than or equal to <i>v</i>,in double precision.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="fmod"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>fmod</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>fmod</i>(&nbsp;)</strong> - compute the remainder of x/y (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double fmod    (    double x, /* numerator */    double y  /* denominator */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p><p>The double-precision modulus of <i>x</i>/<i>y</i> with the sign of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="infinity"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>infinity</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>infinity</i>(&nbsp;)</strong> - return a very large double</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double infinity (void)</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p>This routine returns a very large double.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision representation of positive infinity.</blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="irint"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>irint</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>irint</i>(&nbsp;)</strong> - convert a double-precision value to an integer</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>int irint    (    double x /* argument */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p>This routine converts a double-precision value <i>x</i> to an integerusing the selected IEEE rounding direction.<p></blockquote><h4>CAVEAT</h4><blockquote><p><p>The rounding direction is not pre-selectable and is fixed forround-to-the-nearest.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The integer representation of <i>x</i>.</blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="iround"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>iround</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>iround</i>(&nbsp;)</strong> - round a number to the nearest integer</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>int iround    (    double x /* argument */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p>This routine rounds a double-precision value <i>x</i> to the nearestinteger value.<p></blockquote><h4>NOTE</h4><blockquote><p><p>If <i>x</i> is spaced evenly between two integers, it returns the even integer.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The integer nearest to <i>x</i>.</blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="log"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>log</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>log</i>(&nbsp;)</strong> - compute a natural logarithm (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double log    (    double x /* value to compute the natural logarithm of */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision natural logarithm of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="log10"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>log10</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>log10</i>(&nbsp;)</strong> - compute a base-10 logarithm (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double log10    (    double x /* value to compute the base-10 logarithm of */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision base-10 logarithm of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="log2"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>log2</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>log2</i>(&nbsp;)</strong> - compute a base-2 logarithm</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double log2    (    double x /* value to compute the base-two logarithm of */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p>This routine returns the base-2 logarithm of <i>x</i> in double precision.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision base-2 logarithm of <i>x</i>.</blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="pow"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>pow</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>pow</i>(&nbsp;)</strong> - compute the value of a number raised to a specified power (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double pow    (    double x, /* operand */    double y  /* exponent */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision value of <i>x</i> to the power of <i>y</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="round"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>round</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>round</i>(&nbsp;)</strong> - round a number to the nearest integer</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double round    (    double x /* value to round */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p>This routine rounds a double-precision value <i>x</i> to the nearestintegral value.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision representation of <i>x</i> rounded to thenearest integral value.</blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="sin"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>sin</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>sin</i>(&nbsp;)</strong> - compute a sine (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double sin    (    double x /* angle in radians */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision floating-point sine of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="sincos"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>sincos</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>sincos</i>(&nbsp;)</strong> - compute both a sine and cosine</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>void sincos    (    double   x,         /* angle in radians */    double * sinResult, /* sine result buffer */    double * cosResult  /* cosine result buffer */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p>This routine computes both the sine and cosine of <i>x</i> in double precision.The sine is copied to <i>sinResult</i> and the cosine is copied to <i>cosResult</i>.<p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>N/A</blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b><hr><a name="sinh"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>sinh</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>sinh</i>(&nbsp;)</strong> - compute a hyperbolic sine (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double sinh    (    double x /* angle in radians */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision hyperbolic sine of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="sqrt"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>sqrt</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>sqrt</i>(&nbsp;)</strong> - compute a non-negative square root (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double sqrt    (    double x /* value to compute the square root of */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision square root of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="tan"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>tan</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>tan</i>(&nbsp;)</strong> - compute a tangent (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double tan    (    double x /* angle in radians */    )</pre></blockquote><h4>DESCRIPTION</h4><blockquote><p></blockquote><h4>INCLUDE FILES</h4><blockquote><p><b>math.h</b> <p></blockquote><h4>RETURNS</h4><blockquote><p>The double-precision tangent of <i>x</i>.<p></blockquote><h4>SEE ALSO</h4><blockquote><p><b><a href="./mathALib.html#top">mathALib</a></b>, Kernighan & Ritchie:<i>The C Programming Language, 2nd Edition </i><hr><a name="tanh"></a><p align=right><a href="rtnIndex.html"><i>Libraries :  Routines</i></a></p></blockquote><h1><i>tanh</i>(&nbsp;)</h1> <blockquote></a></blockquote><h4>NAME</h4><blockquote>  <p><strong><i>tanh</i>(&nbsp;)</strong> - compute a hyperbolic tangent (ANSI)</p></blockquote><h4>SYNOPSIS</h4><blockquote><p><pre>double tanh    (

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -