📄 n_nsvm.m
字号:
function [w,gamma,trainCorr, testCorr, cpu_time, nu, mu]=n_nsvm(A,d,rr,k,nu,mu,output,arm)
% version 1.1
% last revision: 01/24/03
%=========================================================================================
% Usage: [w,gamma,trainCorr, testCorr, cpu_time, nu, mu]=n_nsvm(A,d,rr,k,nu,mu,output,arm)
%
% A and d are both required, everything else has a default
% An example: [w gamma train test time nu] = n_nsvm(A, d, .5, 10);
%
% Input parameters:
% A: Data points
% d: 1's or -1's
% rr: reduce rate, default is 100% -> not reduced
% k: way to divide the data set into test and training set
% if k = 0: simply run the algorithm without any correctness
% calculation, this is the default
% if k = 1: run the algorithm and calculate correctness on
% the whole data set
% if k = any value less than the # of rows in the data set:
% divide up the data set into test and training
% using k-fold method
% if k = # of rows in the data set: use the 'leave 1' method
%
% nu: weighted parameter
% -1 - easy estimation
% 0 - hard estimation
% any other value - used as nu by the algorithm
% default - 0
% mu: mu in calculating kernel, 0 means take the default estimation
% output: 0 - no output, 1 - produce output, default is 0
% arm: 1 - use armijo, 0 - otherwise, default is 0
%
% Output parameters:
% w: the normal vector of the classifier
% gamma: the threshold
% trainCorr: training set correctness
% testCorr: test set correctness
% cpu_time: time elapsed
% nu: the value used for nu
%===========================================================
if nargin<8
arm=0;
end
if nargin<7
output=0;
end
if ((nargin<6)|(mu==0))
mu=EstMu(A,d);
end
if ((nargin<5)|(nu==0))
nu = EstNuLong(A,d); % default is hard estimation
elseif nu==-1 % easy estimation
nu = EstNuShort(A,d);
end
if nargin<4
k=0;
end
if nargin<3
rr=1; % not reduced
end
[sm sn]=size(A); % original size
r=randperm(size(d,1));d=d(r,:);A=A(r,:); % random permutation
trainCorr=0;
testCorr=0;
if k==0
A = calcKer(A,rr,mu,output);
tic;
[w, gamma,iter] = core(A,d,nu,arm);
cpu_time=toc;
if output==1
fprintf(1,'\nNumber of Iterations: %d',iter);
fprintf(1,'\nElapsed time: %10.2f\n\n',cpu_time);
end
return
end
%if k==1 only training set correctness is calculated
if k==1
[kA,Abar] = calcKer(A,rr,mu,output);
tic;
[w, gamma,iter] = core(kA,d,nu,arm);
trainCorr = correctness(A,Abar,d,w,gamma,mu);
cpu_time = toc;
if output == 1
fprintf(1,'\nTraining set correctness: %3.2f%%',trainCorr);
fprintf(1,'\nNumber of Iterations: %d',iter);
fprintf(1,'\nElapsed time: %10.2f\n\n',cpu_time);
end
return
end
accuIter = 0;
cpu_time = 0;
indx = [0:k];
indx = floor(sm*indx/k); %last row numbers for all 'segments'
% split trainining set from test set
for i = 1:k
Ctest = []; dtest = [];Ctrain = []; dtrain = [];
Ctest = A((indx(i)+1:indx(i+1)),:);
dtest = d(indx(i)+1:indx(i+1));
Ctrain = A(1:indx(i),:);
Ctrain = [Ctrain;A(indx(i+1)+1:sm,:)];
dtrain = [d(1:indx(i));d(indx(i+1)+1:sm,:)];
[kCtrain,Abar] = calcKer(Ctrain,rr,mu,output);
tic;
[w, gamma, iter] = core(kCtrain,dtrain,nu,arm);
thisToc = toc;
tmpTrainCorr = correctness(Ctrain,Abar,dtrain,w,gamma,mu);
tmpTestCorr = correctness(Ctest,Abar,dtest,w,gamma,mu);
if output==1
fprintf(1,'Fold %d\n',i);
fprintf(1,'Training set correctness: %3.2f%%\n',tmpTrainCorr);
fprintf(1,'Testing set correctness: %3.2f%%\n',tmpTestCorr);
fprintf(1,'Number of iterations: %d\n',iter);
fprintf(1,'Elapsed time: %10.2f\n',thisToc);
end
trainCorr = trainCorr + tmpTrainCorr;
testCorr = testCorr + tmpTestCorr;
accuIter = accuIter + iter; % accumulative iterations
cpu_time = cpu_time + thisToc;
end % end of for (looping through test sets)
trainCorr = trainCorr/k;
testCorr = testCorr/k;
cpu_time=cpu_time/k;
if output == 1
fprintf(1,'==============================================');
fprintf(1,'\nTraining set correctness: %3.2f%%',trainCorr);
fprintf(1,'\nTesting set correctness: %3.2f%%',testCorr);
fprintf(1,'\nAverage number of iterations: %d',accuIter/k);
fprintf(1,'\nAverage cpu_time: %10.2f\n',cpu_time);
end
return; % nsvm function return
%%%%%%%%%%% core calculation function %%%%%%%%%%%%%%%%%%%%%
function [w, gamma, iter] = core(A,d,nu,arm);
[m,n]=size(A);
if m>=n
[w,gamma,iter]=nsvm_with_smw(A,d,nu,arm);
else
[w,gamma,iter]=nsvm_without_smw(A,d,nu,arm);
end
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NSVM for m>=n %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [w,gamma,iter]=nsvm_with_smw(A,d,nu,arm);
% with armijo and with SMW
maxIter=100;
[m,n]=size(A);
iter=0;
u=zeros(m,1);e=ones(m,1);
H=[spdiags(d,0,m,m)*A -d];
alpha=1.1*((1/nu)+(norm(H',2)^2));
v=u/nu+H*(H'*u)-e;
hu=-max((v-alpha*u),0)+v;
while norm(hu)>10^(-3) & (iter< maxIter)
iter=iter+1;
E=sign(max(v-alpha*u,0));
temp=(1./((alpha-(1/nu))*E+(1/nu)));
G=spdiags(temp.*(1-E),0,m,m);
FHU=temp.*hu;
LD=H'*FHU;
GH=G*H;
SM=speye(n+1)+H'*GH;
R=chol(SM);
sol=R'\LD;
sol=R\sol;
delta=FHU-GH*sol;
if arm==1 %armijo step
lambda=1;
v1=v+e;
v2=v;
su=0.5*(u'*v1)-sum(u)+(1/(2*alpha))*(norm(max(-alpha*u+v2,0))^2-norm(v2)^2);
unew=u-lambda*delta;
v1=u/nu+H*(H'*unew);
v2=v1-e;
sunew=0.5*(unew'*v1)-sum(unew)+(1/(2*alpha))*(norm(max(-alpha*unew+v2,0))^2-norm(v2)^2);
while su-sunew < -(0.25)*lambda*hu
lambda=0.1*lambda;
unew=u-lambda*delta;
v1=u/nu+H*(H'*unew);
v2=v1-e;
sunew=0.5*(unew'*v1)-sum(unew)+(1/(2*alpha))*(norm(max(-alpha*unew+v2,0))^2-norm(v2)^2);
end
else
unew=u-delta;
end
u=unew;
v=u/nu+H*(H'*u)-e;
hu=-max((v-alpha*u),0)+v;
end
w=A'*(d.*u);gamma=-sum(d.*u);
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NSVM for m<n %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [w,gamma,iter]=nsvm_without_smw(A,d,nu,arm);
maxIter=100;
[m,n]=size(A);
iter=0;
u=zeros(m,1);e=ones(m,1);
HH=diag(d)*(A*A'+1)*diag(d);
Q=speye(m)/nu+HH;
alpha=1.1*((1/nu)+norm(HH));
v=Q*u-e;
hu=-max((v-alpha*u),0)+v;
while norm(hu)>10^(-3) & (iter< maxIter)
iter=iter+1
dhu=sign(max(((Q-alpha*eye(m))*u-e),0));% the 1/2 thing
dhu=sparse((diag(1-dhu))*Q+diag(alpha*dhu));
delta=dhu\hu;
if arm==1 %armijo step
lambda=1;
v=Q*u;
ve=v-e;
su=0.5*(u'*v)-sum(u)+(1/(2*alpha))*(norm(max(-alpha*u+ve,0))^2-norm(ve)^2)
unew=u-lambda*delta;
v=Q*unew;
ve=v-e;
sunew=0.5*(unew'*v)-sum(unew)+(1/(2*alpha))*(norm(max(-alpha*unew+ve,0))^2-norm(ve)^2);
at=0;
while (su-sunew < -(0.25)*lambda*hu) & (at<5)
at=at+1;
disp('armijo');
lambda=0.5*lambda;
unew=u-lambda*delta;
v=Q*unew;
ve=v-e;
sunew=0.5*(unew'*v)-sum(unew)+(1/(2*alpha))*(norm(max(-alpha*unew+ve,0))^2-norm(ve)^2);
end
if at==5
unew=u-delta;
end
else
unew=u-delta;
end
u=unew;
v=Q*unew-e;
hu=-max((v-alpha*u),0)+v;
end
w=A'*(d.*u);gamma=-sum(d.*u);
return
%%%%%%%%%%%%%%%% correctness calculation %%%%%%%%%%%%%%%%
function corr = correctness(Atest,Abar,dd,w,gamma,mu)
k = Rec_Kernel(Atest,Abar,mu);
p = sign(k*w - gamma);
corr=length(find(p==dd))/size(Atest,1)*100;
return
%%%%%%%%%%%%%%EstNuLong%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% hard way to estimate nu if not specified by the user
function value = EstNuLong(C,d)
[m,n]=size(C);e=ones(m,1);
H=[C -e];
if m<201
H2=H;d2=d;
else
r=rand(m,1);
[s1,s2]=sort(r);
H2=H(s2(1:200),:);
d2=d(s2(1:200));
end
lamda=1;
[vu,u]=eig(H2*H2');u=diag(u);p=length(u);
yt=d2'*vu;
lamdaO=lamda+1;
cnt=0;
while (abs(lamdaO-lamda)>10e-4)&(cnt<100)
cnt=cnt+1;
nu1=0;pr=0;ee=0;waw=0;
lamdaO=lamda;
for i=1:p
nu1= nu1 + lamda/(u(i)+lamda);
pr= pr + u(i)/(u(i)+lamda)^2;
ee= ee + u(i)*yt(i)^2/(u(i)+lamda)^3;
waw= waw + lamda^2*yt(i)^2/(u(i)+lamda)^2;
end
lamda=nu1*ee/(pr*waw);
end
value = lamda;
if cnt==100
value=1;
end
return
%%%%%%%%%%%%%%%%%EstNuShort%%%%%%%%%%%%%%%%%%%%%%%
% easy way to estimate nu if not specified by the user
function value = EstNuShort(C,d)
value = 1/(sum(sum(C.^2))/size(C,2));
return
%%%%%%%%%%%%%%calcKer%%%%%%%%%%%%%%%%%%%%%%%
function [A,Abar] = calcKer(A,rr,mu,output)
[sm sn]=size(A);
% calculate kernel
if output==1
fprintf(1,'\nCalculating kernel . . .\n');
end
rrows = floor(rr*sm); % reduced number of rows
indx = rand(sm,1);
[s1 s2]=sort(indx);
Abar = A(s2(1:rrows),:)';
A = Rec_Kernel(A,Abar,mu);
return;
%%%%%%%%%%%%%%%%%%%%%%%EstMu%%%%%%%%%%%%%
function mu = EstMu(A,d)
Aplus = A(find(d==1),:); Aminus=A(find(d==-1),:);
AplusRow = size(Aplus,1);
AminusRow = size(Aminus,1);
x=(sum(Aplus,1)/AplusRow + sum(Aminus,1)/AminusRow);
mu = 1/(1 + x*x');
return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -