📄 c_jacobi03.c
字号:
/* *********************************************************************** This program is part of the OpenMP Source Code Repository http://www.pcg.ull.es/ompscr/ e-mail: ompscr@etsii.ull.es Copyright (c) 2004, OmpSCR Group All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the University of La Laguna nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. FILE: c_jacobi03.c VERSION: 1.0 DATE: Oct 2004 AUTHORS: Author: Joseph Robicheaux, Kuck and Associates, Inc. (KAI), 1998 Modified: Sanjiv Shah, Kuck and Associates, Inc. (KAI), 1998 This version: Dieter an Mey, Aachen University (RWTH), 1999 - 2003 anmey@rz.rwth-aachen.de http://www.rwth-aachen.de/People/D.an.Mey.html COMMENTS TO: ompscr@etsii.ull.es DESCRIPTION: program to solve a finite difference discretization of Helmholtz equation : (d2/dx2)u + (d2/dy2)u - alpha u = f using Jacobi iterative method. COMMENTS: OpenMP version 3: 1 PR outside the iteration loop, 4 Barriers Directives are used in this code to achieve paralleism. All do loops are parallized with default 'static' scheduling. REFERENCES: http://www.rz.rwth-aachen.de/computing/hpc/prog/par/openmp/jacobi.html BASIC PRAGMAS: parallel for USAGE: ./c_jacobi03.par 5000 5000 0.8 1.0 1000 INPUT: n - grid dimension in x direction m - grid dimension in y direction alpha - Helmholtz constant (always greater than 0.0) tol - error tolerance for iterative solver relax - Successice over relaxation parameter mits - Maximum iterations for iterative solver OUTPUT: Residual and error u(n,m) - Dependent variable (solutions) f(n,m) - Right hand side function FILE FORMATS: - RESTRICTIONS: - REVISION HISTORY:**************************************************************************/#include <stdio.h>#include <math.h>#include <stdlib.h>#include "OmpSCR.h"#define U(i,j) u[(i)*n+(j)]#define F(i,j) f[(i)*n+(j)]#define NUM_ARGS 6#define NUM_TIMERS 1int n, m, mits;double tol, relax, alpha;void jacobi (int n, int m, double dx, double dy, double alpha, double omega, double *u, double *f, double tol, int maxit );/******************************************************* Initializes data * Assumes exact solution is u(x,y) = (1-x^2)*(1-y^2)*******************************************************/void initialize( int n, int m, double alpha, double *dx, double *dy, double *u, double *f){ int i,j,xx,yy; *dx = 2.0 / (n-1); *dy = 2.0 / (m-1); /* Initilize initial condition and RHS */ for (j=0; j<m; j++){ for (i=0; i<n; i++){ xx = -1.0 + *dx * (i-1); yy = -1.0 + *dy * (j-1); U(j,i) = 0.0; F(j,i) = -alpha * (1.0 - xx*xx) * (1.0 - yy*yy) - 2.0 * (1.0 - xx*xx) - 2.0 * (1.0 - yy*yy); } } }/************************************************************* Checks error between numerical and exact solution *************************************************************/void error_check( int n, int m, double alpha, double dx, double dy, double *u, double *f){ int i,j; double xx, yy, temp, error; dx = 2.0 / (n-1); dy = 2.0 / (n-2); error = 0.0; for (j=0; j<m; j++){ for (i=0; i<n; i++){ xx = -1.0 + dx * (i-1); yy = -1.0 + dy * (j-1); temp = U(j,i) - (1.0 - xx*xx) * (1.0 - yy*yy); error += temp*temp; } } error = sqrt(error)/(n*m); printf("Solution Error : %g\n", error);}int main(int argc, char **argv){ double *u, *f, dx, dy; double dt, mflops; int NUMTHREADS; char *PARAM_NAMES[NUM_ARGS] = {"Grid dimension: X dir =", "Grid dimension: Y dir =", "Helmhotlz constant =", "Successive over-relaxation parameter =", "error tolerance for iterative solver =", "Maximum iterations for solver ="}; char *TIMERS_NAMES[NUM_TIMERS] = {"Total_time"}; char *DEFAULT_VALUES[NUM_ARGS] = {"5000", "5000", "0.8", "1.0", "1e-7", "1000"}; NUMTHREADS = omp_get_max_threads(); OSCR_init (NUMTHREADS, "Jacobi Solver v1", "Use 'jacoib03' <n> <m> <alpha> <relax> <tol> <mits>", NUM_ARGS, PARAM_NAMES, DEFAULT_VALUES , NUM_TIMERS, NUM_TIMERS, TIMERS_NAMES, argc, argv); n = OSCR_getarg_int(1); m = OSCR_getarg_int(2); alpha = OSCR_getarg_double(3); relax = OSCR_getarg_double(4); tol = OSCR_getarg_double(5); mits = OSCR_getarg_int(6); printf("-> %d, %d, %g, %g, %g, %d\n", n, m, alpha, relax, tol, mits); u = (double *) OSCR_malloc(n*m*sizeof(double)); f = (double *) OSCR_malloc(n*m*sizeof(double)); /* arrays are allocated and initialzed */ initialize(n, m, alpha, &dx, &dy, u, f); /* Solve Helmholtz eqiation */ OSCR_timer_start(0); jacobi(n, m, dx, dy, alpha, relax, u,f, tol, mits); OSCR_timer_stop(0); dt = OSCR_timer_read(0); printf(" elapsed time : %12.6f\n", dt); mflops = (0.000001*mits*(m-2)*(n-2)*13) / dt; printf(" MFlops : %12.6g (%d, %d, %d, %g)\n",mflops, mits, m, n, dt); error_check(n, m, alpha, dx, dy, u, f); OSCR_report(1, TIMERS_NAMES); return 0;}/* subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)******************************************************************* Subroutine HelmholtzJ* Solves poisson equation on rectangular grid assuming : * (1) Uniform discretization in each direction, and * (2) Dirichlect boundary conditions * * Jacobi method is used in this routine ** Input : n,m Number of grid points in the X/Y directions * dx,dy Grid spacing in the X/Y directions * alpha Helmholtz eqn. coefficient * omega Relaxation factor * f(n,m) Right hand side function * u(n,m) Dependent variable/Solution* tol Tolerance for iterative solver * maxit Maximum number of iterations ** Output : u(n,m) - Solution ******************************************************************/void jacobi ( const int n, const int m, double dx, double dy, double alpha, double omega, double *u, double *f, double tol, int maxit ){ int i,j,k; double error, resid, ax, ay, b; double *uold; /* wegen Array-Kompatibilitaet, werden die Zeilen und Spalten (im Kopf) getauscht, zB uold[spalten_num][zeilen_num]; bzw. wir tuen so, als ob wir das gespiegelte Problem loesen wollen */ uold = (double *)OSCR_malloc(sizeof(double) * n *m); ax = 1.0/(dx * dx); /* X-direction coef */ ay = 1.0/(dy*dy); /* Y_direction coef */ b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha; /* Central coeff */ error = 10.0 * tol; k = 1;#pragma omp parallel private(resid, i) { while (k <= maxit && error > tol) { /* copy new solution into old */#pragma omp for for (j=0; j<m; j++) for (i=0; i<n; i++) uold[i + m*j] = u[i + m*j]; /* compute stencil, residual and update */#pragma omp for reduction(+:error) for (i=1; i<n-1; i++){ resid =( ax * (uold[i-1 + m*j] + uold[i+1 + m*j]) + ay * (uold[i + m*(j-1)] + uold[i + m*(j+1)]) + b * uold[i + m*j] - f[i + m*j] ) / b; /* update solution */ u[i + m*j] = uold[i + m*j] - omega * resid; /* accumulate residual error */ error =error + resid*resid; } /* end for */ /* error check */#pragma omp master { k++; error = sqrt(error) /(n*m); } } /* while */ } /* end parallel */ printf("Total Number of Iteratuons %d\n", k); printf("Residual %.15f\n", error); free(uold);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -