⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 c_jacobi02.c

📁 program to solve a finite difference discretization of Helmholtz equation : (
💻 C
字号:
/* ***********************************************************************  This program is part of the        OpenMP Source Code Repository        http://www.pcg.ull.es/ompscr/        e-mail: ompscr@etsii.ull.es   Copyright (c) 2004, OmpSCR Group   All rights reserved.   Redistribution and use in source and binary forms, with or without modification,    are permitted provided that the following conditions are met:     * Redistributions of source code must retain the above copyright notice,        this list of conditions and the following disclaimer.      * Redistributions in binary form must reproduce the above copyright notice,        this list of conditions and the following disclaimer in the documentation        and/or other materials provided with the distribution.      * Neither the name of the University of La Laguna nor the names of its contributors        may be used to endorse or promote products derived from this software without        specific prior written permission.    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.   IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,    INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,    OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY    OF SUCH DAMAGE.  FILE:              c_jacobi02.c  VERSION:           1.1  DATE:              Oct 2004  AUTHORS:           Author:       Joseph Robicheaux, Kuck and Associates, Inc. (KAI), 1998                     Modified:     Sanjiv Shah,       Kuck and Associates, Inc. (KAI), 1998                     This version: Dieter an Mey,     Aachen University (RWTH), 1999 - 2003                                   anmey@rz.rwth-aachen.de                                   http://www.rwth-aachen.de/People/D.an.Mey.html  COMMENTS TO:       ompscr@etsii.ull.es  DESCRIPTION:       program to solve a finite difference discretization of Helmholtz equation :                      (d2/dx2)u + (d2/dy2)u - alpha u = f using Jacobi iterative method.  COMMENTS:          OpenMP version 2: 2 parallel loops in one parallel region (PR)                       Directives are used in this code to achieve paralleism.                      All do loops are parallized with default 'static' scheduling.  REFERENCES:        http://www.rz.rwth-aachen.de/computing/hpc/prog/par/openmp/jacobi.html  BASIC PRAGMAS:     parallel for  USAGE:             ./c_jacobi02.par 5000 5000 0.8 1.0 1000  INPUT:             n - grid dimension in x direction                     m - grid dimension in y direction                     alpha - Helmholtz constant (always greater than 0.0)                     tol   - error tolerance for iterative solver                     relax - Successice over relaxation parameter                     mits  - Maximum iterations for iterative solver  OUTPUT:            Residual and error                      u(n,m) - Dependent variable (solutions)                     f(n,m) - Right hand side function   FILE FORMATS:      -  RESTRICTIONS:      -  REVISION HISTORY:**************************************************************************/#include <stdio.h>#include <math.h>#include <stdlib.h>#include "OmpSCR.h"#define U(i,j) u[(i)*n+(j)]#define F(i,j) f[(i)*n+(j)]#define NUM_ARGS  6#define NUM_TIMERS 1int n, m, mits;double tol, relax, alpha;void jacobi (int n, int m, double dx, double dy,              double alpha, double omega,              double *u, double *f,              double tol, int maxit );/******************************************************* Initializes data * Assumes exact solution is u(x,y) = (1-x^2)*(1-y^2)*******************************************************/void initialize(                  int n,                    int m,                double alpha,                double *dx,                double *dy,                double *u,                double *f){  int i,j,xx,yy;  *dx = 2.0 / (n-1);  *dy = 2.0 / (m-1);  /* Initilize initial condition and RHS */  for (j=0; j<m; j++){    for (i=0; i<n; i++){      xx = -1.0 + *dx * (i-1);      yy = -1.0 + *dy * (j-1);      U(j,i) = 0.0;      F(j,i) = -alpha * (1.0 - xx*xx) * (1.0 - yy*yy)                - 2.0 * (1.0 - xx*xx) - 2.0 * (1.0 - yy*yy);    }  }      }/************************************************************* Checks error between numerical and exact solution *************************************************************/void error_check(                 int n,                 int m,                 double alpha,                 double dx,                 double dy,                 double *u,                 double *f){  int i,j;  double xx, yy, temp, error;  dx = 2.0 / (n-1);  dy = 2.0 / (n-2);  error = 0.0;  for (j=0; j<m; j++){    for (i=0; i<n; i++){      xx = -1.0 + dx * (i-1);      yy = -1.0 + dy * (j-1);      temp = U(j,i) - (1.0 - xx*xx) * (1.0 - yy*yy);      error += temp*temp;    }  } error = sqrt(error)/(n*m);  printf("Solution Error : %g\n", error);}int main(int argc, char **argv){    double *u, *f, dx, dy;    double dt, mflops;    int NUMTHREADS;    char *PARAM_NAMES[NUM_ARGS] = {"Grid dimension: X dir =", "Grid dimension: Y dir =", "Helmhotlz constant =",                                    "Successive over-relaxation parameter =",                                    "error tolerance for iterative solver =", "Maximum iterations for solver ="};     char *TIMERS_NAMES[NUM_TIMERS] = {"Total_time"};    char *DEFAULT_VALUES[NUM_ARGS] = {"5000", "5000", "0.8", "1.0", "1e-7", "1000"};   NUMTHREADS = omp_get_max_threads();   OSCR_init (NUMTHREADS, "Jacobi Solver v1", "Use 'jacobi02' <n> <m> <alpha> <relax> <tol> <mits>", NUM_ARGS,                PARAM_NAMES, DEFAULT_VALUES , NUM_TIMERS, NUM_TIMERS, TIMERS_NAMES,                argc, argv);    n = OSCR_getarg_int(1);    m = OSCR_getarg_int(2);    alpha = OSCR_getarg_double(3);    relax = OSCR_getarg_double(4);    tol = OSCR_getarg_double(5);    mits = OSCR_getarg_int(6);    printf("-> %d, %d, %g, %g, %g, %d\n",           n, m, alpha, relax, tol, mits);        u = (double *) OSCR_malloc(n*m*sizeof(double));    f = (double *) OSCR_malloc(n*m*sizeof(double));    /* arrays are allocated and initialzed */    initialize(n, m, alpha, &dx, &dy, u, f);        /* Solve Helmholtz eqiation */    OSCR_timer_start(0);    jacobi(n, m, dx, dy, alpha, relax, u,f, tol, mits);    OSCR_timer_stop(0);    dt = OSCR_timer_read(0);    printf(" elapsed time : %12.6f\n", dt);    mflops = (0.000001*mits*(m-2)*(n-2)*13) / dt;    printf(" MFlops       : %12.6g (%d, %d, %d, %g)\n",mflops, mits, m, n, dt);    error_check(n, m, alpha, dx, dy, u, f);       OSCR_report(1, TIMERS_NAMES);       return 0;}/*       subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)******************************************************************* Subroutine HelmholtzJ* Solves poisson equation on rectangular grid assuming : * (1) Uniform discretization in each direction, and * (2) Dirichlect boundary conditions * * Jacobi method is used in this routine ** Input : n,m   Number of grid points in the X/Y directions *         dx,dy Grid spacing in the X/Y directions *         alpha Helmholtz eqn. coefficient *         omega Relaxation factor *         f(n,m) Right hand side function *         u(n,m) Dependent variable/Solution*         tol    Tolerance for iterative solver *         maxit  Maximum number of iterations ** Output : u(n,m) - Solution ******************************************************************/void jacobi ( const int n, const int m, double dx, double dy, double alpha, 	double omega, double *u, double *f, double tol, int maxit ){  int i,j,k;  double error, resid, ax, ay, b;  double *uold;  /* wegen Array-Kompatibilitaet, werden die Zeilen und Spalten (im Kopf)	 getauscht, zB uold[spalten_num][zeilen_num]; bzw. wir tuen so, als ob wir das	 gespiegelte Problem loesen wollen */  uold = (double *)OSCR_malloc(sizeof(double) * n *m);  ax = 1.0/(dx * dx); /* X-direction coef */  ay = 1.0/(dy*dy); /* Y_direction coef */  b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha; /* Central coeff */  error = 10.0 * tol;  k = 1;  while (k <= maxit && error > tol) {	error = 0.0;#pragma omp parallel private(resid, i)	{	  /* copy new solution into old */#pragma omp for	  for (j=0; j<m; j++)		for (i=0; i<n; i++)		  uold[i + m*j] = u[i + m*j];	  /* compute stencil, residual and update */#pragma omp for reduction(+:error)	  for (j=1; j<m-1; j++)		for (i=1; i<n-1; i++){		  resid =(				  ax * (uold[i-1 + m*j] + uold[i+1 + m*j])				  + ay * (uold[i + m*(j-1)] + uold[i + m*(j+1)])				  + b * uold[i + m*j] - f[i + m*j]				  ) / b;		  		  /* update solution */		  u[i + m*j] = uold[i + m*j] - omega * resid;		  /* accumulate residual error */		  error =error + resid*resid;		}        	} /* end parallel */	/* error check */	k++;    error = sqrt(error) /(n*m);  } /* while */  printf("Total Number of Iteratuons %d\n", k);  printf("Residual                   %.15f\n", error);  free(uold);} 	

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -