📄 qiuni.txt
字号:
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>
#define MAX 255
void MatrixMul(a,b,m,n,k,c) /*实矩阵相乘*/
int m,n,k; /*m:矩阵A的行数, n:矩阵B的行数, k:矩阵B的列数*/
double a[],b[],c[]; /*a为A矩阵, b为B矩阵, c为结果,即C = AB */
{
int i,j,l,u;
/*逐行逐列计算乘积*/
for (i=0; i<=m-1; i++)
for (j=0; j<=k-1; j++)
{
u=i*k+j; c[u]=0.0;
for (l=0; l<=n-1; l++)
c[u]=c[u]+a[i*n+l]*b[l*k+j];
}
return;
}
int brinv(a,n) /*求矩阵的逆矩阵*/
int n; /*矩阵的阶数*/
double a[]; /*矩阵C*/
{
int *is,*js,i,j,k,l,u,v;
double d,p;
is=malloc(n*sizeof(int));
js=malloc(n*sizeof(int));
for (k=0; k<=n-1; k++)
{
d=0.0;
for (i=k; i<=n-1; i++)
/*全选主元,即选取绝对值最大的元素*/
for (j=k; j<=n-1; j++)
{
l=i*n+j; p=fabs(a[l]);
if (p>d) { d=p; is[k]=i; js[k]=j;}
}
/*全部为0,此时为奇异矩阵*/
if (d+1.0==1.0)
{
free(is); free(js); printf(" >> This is a singular matrix, can't be inversed!\n");
return(0);
}
/*行交换*/
if (is[k]!=k)
for (j=0; j<=n-1; j++)
{
u=k*n+j; v=is[k]*n+j;
p=a[u]; a[u]=a[v]; a[v]=p;
}
/*列交换*/
if (js[k]!=k)
for (i=0; i<=n-1; i++)
{
u=i*n+k; v=i*n+js[k];
p=a[u]; a[u]=a[v]; a[v]=p;
}
l=k*n+k;
a[l]=1.0/a[l]; /*求主元的倒数*/
/* a[kj]a[kk] -> a[kj] */
for (j=0; j<=n-1; j++)
if (j!=k)
{
u=k*n+j; a[u]=a[u]*a[l];
}
/* a[ij] - a[ik]a[kj] -> a[ij] */
for (i=0; i<=n-1; i++)
if (i!=k)
for (j=0; j<=n-1; j++)
if (j!=k)
{
u=i*n+j;
a[u]=a[u]-a[i*n+k]*a[k*n+j];
}
/* -a[ik]a[kk] -> a[ik] */
for (i=0; i<=n-1; i++)
if (i!=k)
{
u=i*n+k; a[u]=-a[u]*a[l];
}
}
for (k=n-1; k>=0; k--)
{
/*恢复列*/
if (js[k]!=k)
for (j=0; j<=n-1; j++)
{
u=k*n+j; v=js[k]*n+j;
p=a[u]; a[u]=a[v]; a[v]=p;
}
/*恢复行*/
if (is[k]!=k)
for (i=0; i<=n-1; i++)
{
u=i*n+k; v=i*n+is[k];
p=a[u]; a[u]=a[v]; a[v]=p;
}
}
free(is); free(js);
return(1);
}
print_matrix(a,n)/*打印方阵a的元素*/
int n; /*矩阵的阶数*/
double a[]; /*矩阵C或D*/
{
int i,j;
for (i=0; i<n; i++)
{
for (j=0; j<n; j++)
printf("%13.7f\t",a[i*n+j]);
printf("\n");
}
}
int main()
{
int i,j,k,n=0,m;
double A[MAX],B[MAX],C[MAX],D[MAX],E[MAX]; /* 题中没有说明,这里做实数看待 */
system("cls");
puts("**********************************************************");
puts("* This program is to inverse a square matrix(nxn). *");
puts("**********************************************************");
while(n<=0)
{ /* 设A是n*m矩阵则B必为m*n矩阵,这样AB才会是方阵存在逆矩阵 */
printf(" >> Please input the number of rows in A, n= ");
scanf("%d",&n);
printf(" >> Please input the number of cols in A, m= ");
scanf("%d",&m);
}
printf(" >> Please input the elements of the matrix A one by one:\n >> ");
for(i=0;i<n*m;i++)
scanf("%lf",&A[i]);
printf(" >> Please input the elements of the matrix B one by one:\n >> ");
for(i=0;i<m*n;i++)
scanf("%lf",&B[i]);
MatrixMul(A,B,n,m,n,C);/* A*B的结果存在C里面 */
for(i=0;i<n*n;i++) /* D[n*n]是C[n*n](也就是AB)的副本,当C[n*n]变换为本身的逆矩阵后再和D[n*n]做乘积运算 */
D[i]=C[i]; /* 如果乘积结果为单位矩阵,则说明计算结果正确 */
i=brinv(C,n);
if (i!=0)
{
printf(" Matrix AB:\n");
print_matrix(D,n);
printf("\n");
printf(" AB's Inverse Matrix AB-:\n");
print_matrix(C,n);
printf("\n");
printf(" Product of AB and AB- :\n");
MatrixMul(D,C,n,n,n,E);
print_matrix(E,n);
}
system("pause");
return 0;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -