📄 sample4_5.java
字号:
/*
* 示例程序Sample4_5: LEquations类的复系数方程组的全选主元高斯-约当消去法
*/
package javaalgorithm.sample;
import javaalgorithm.algorithm.Complex;
import javaalgorithm.algorithm.Matrix;
import javaalgorithm.algorithm.LEquations;
public class Sample4_5
{
public static void main(String[] args)
{
// 系数矩阵数据
// 实部
double[] mtxDataCoef4Real = {
1.0,3.0,2.0,13.0,
7.0,2.0,1.0,-2.0,
9.0,15.0,3.0,-2.0,
-2.0,-2.0,11.0,5.0};
// 虚部
double[] mtxDataCoef4Imag = {
3.0,-2.0,1.0,6.0,
-2.0,7.0,5.0,8.0,
9.0,-3.0,15.0,1.0,
-2.0,-2.0,7.0,6.0};
// 常数矩阵数据
// 实部
double[] mtxDataConst4Real = {
2.0,-2.0,
7.0,3.0,
3.0,2.0,
9.0,1.0};
// 虚部
double[] mtxDataConst4Imag = {
1.0,3.0,
2.0,7.0,
-2.0,9.0,
3.0,2.0};
// 构造系数矩阵
Matrix mtxCoef4Real = new Matrix(4, mtxDataCoef4Real);
Matrix mtxCoef4Imag = new Matrix(4, mtxDataCoef4Imag);
// 构造常数矩阵
Matrix mtxConst4Real = new Matrix(4, 2, mtxDataConst4Real);
Matrix mtxConst4Imag = new Matrix(4, 2, mtxDataConst4Imag);
// 构造线性方程组
LEquations leqs4 = new LEquations(mtxCoef4Real, mtxConst4Real);
// 复系数方程组的全选主元高斯-约当消去法
Matrix mtxResult4Real = new Matrix();
Matrix mtxResult4Imag = new Matrix();
if (leqs4.GetRootsetGaussJordan(mtxCoef4Imag, mtxConst4Imag, mtxResult4Real, mtxResult4Imag))
{
for (int i=0; i<mtxConst4Real.getNumRows(); ++i)
{
Complex cp1 = new Complex(mtxResult4Real.getElement(i,0), mtxResult4Imag.getElement(i,0));
Complex cp2 = new Complex(mtxResult4Real.getElement(i,1), mtxResult4Imag.getElement(i,1));
System.out.println(cp1 + ", " + cp2);
}
}
else
{
System.out.println("失败");
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -