⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix.java

📁 实现用于工程计算的的数学方法
💻 JAVA
📖 第 1 页 / 共 5 页
字号:

		for (j=0; j<=n-1; j++)
	    { 
			it=0;
	        h=eps*(Math.abs(dblB[j])+Math.abs(dblC[j]));
	        if (h>d) 
				d=h;
	        
			m=j;
	        while ((m<=n-1) && (Math.abs(dblC[m])>d)) 
				m=m+1;
	        
			if (m!=j)
	        { 
				do
	            { 
					if (it==nMaxIt)
						return false;

	                it=it+1;
	                g=dblB[j];
	                p=(dblB[j+1]-g)/(2.0*dblC[j]);
	                r=Math.sqrt(p*p+1.0);
	                if (p>=0.0) 
						dblB[j]=dblC[j]/(p+r);
	                else 
						dblB[j]=dblC[j]/(p-r);
	                
					h=g-dblB[j];
	                for (i=j+1; i<=n-1; i++)
						dblB[i]=dblB[i]-h;
	                
					f=f+h; 
					p=dblB[m]; 
					e=1.0; 
					s=0.0;
	                for (i=m-1; i>=j; i--)
	                { 
						g=e*dblC[i]; 
						h=e*p;
	                    if (Math.abs(p)>=Math.abs(dblC[i]))
	                    { 
							e=dblC[i]/p; 
							r=Math.sqrt(e*e+1.0);
	                        dblC[i+1]=s*p*r; 
							s=e/r; 
							e=1.0/r;
	                    }
	                    else
						{ 
							e=p/dblC[i]; 
							r=Math.sqrt(e*e+1.0);
	                        dblC[i+1]=s*dblC[i]*r;
	                        s=1.0/r; 
							e=e/r;
	                    }
	                    
						p=e*dblB[i]-s*g;
	                    dblB[i+1]=h+s*(e*g+s*dblB[i]);
	                    for (k=0; k<=n-1; k++)
	                    { 
							u=k*n+i+1; 
							v=u-1;
	                        h=mtxQ.elements[u]; 
							mtxQ.elements[u]=s*mtxQ.elements[v]+e*h;
	                        mtxQ.elements[v]=e*mtxQ.elements[v]-s*h;
	                    }
	                }
	                
					dblC[j]=s*p; 
					dblB[j]=e*p;
	            
				} while (Math.abs(dblC[j])>d);
	        }
	        
			dblB[j]=dblB[j]+f;
	    }
	    
		for (i=0; i<=n-1; i++)
	    { 
			k=i; 
			p=dblB[i];
	        if (i+1<=n-1)
	        { 
				j=i+1;
	            while ((j<=n-1) && (dblB[j]<=p))
	            { 
					k=j; 
					p=dblB[j]; 
					j=j+1;
				}
	        }

	        if (k!=i)
	        { 
				dblB[k]=dblB[i]; 
				dblB[i]=p;
	            for (j=0; j<=n-1; j++)
	            { 
					u=j*n+i; 
					v=j*n+k;
	                p=mtxQ.elements[u]; 
					mtxQ.elements[u]=mtxQ.elements[v]; 
					mtxQ.elements[v]=p;
	            }
	        }
	    }
	    
		return true;
	}

	/**
	 * 约化一般实矩阵为赫申伯格矩阵的初等相似变换法
	 */
	public void makeHberg()
	{ 
		int i = 0,j,k,u,v;
	    double d,t;

	    for (k=1; k<=numColumns-2; k++)
	    { 
			d=0.0;
	        for (j=k; j<=numColumns-1; j++)
	        { 
				u=j*numColumns+k-1; 
				t=elements[u];
	            if (Math.abs(t)>Math.abs(d))
	            { 
					d=t; 
					i=j;
				}
	        }
	        
			if (d != 0.0)
	        { 
				if (i!=k)
	            { 
					for (j=k-1; j<=numColumns-1; j++)
	                { 
						u=i*numColumns+j; 
						v=k*numColumns+j;
	                    t=elements[u]; 
						elements[u]=elements[v]; 
						elements[v]=t;
	                }
	                
					for (j=0; j<=numColumns-1; j++)
	                { 
						u=j*numColumns+i; 
						v=j*numColumns+k;
	                    t=elements[u]; 
						elements[u]=elements[v]; 
						elements[v]=t;
	                }
	            }
	            
				for (i=k+1; i<=numColumns-1; i++)
	            { 
					u=i*numColumns+k-1; 
					t=elements[u]/d; 
					elements[u]=0.0;
	                for (j=k; j<=numColumns-1; j++)
	                { 
						v=i*numColumns+j;
	                    elements[v]=elements[v]-t*elements[k*numColumns+j];
	                }
	                
					for (j=0; j<=numColumns-1; j++)
	                { 
						v=j*numColumns+k;
	                    elements[v]=elements[v]+t*elements[j*numColumns+i];
	                }
	            }
	        }
	    }
	}

	/**
	 * 求赫申伯格矩阵全部特征值的QR方法
	 * 
	 * @param dblU - 一维数组,长度为矩阵的阶数,返回时存放特征值的实部
	 * @param dblV - 一维数组,长度为矩阵的阶数,返回时存放特征值的虚部
	 * @param nMaxIt - 迭代次数
	 * @param eps - 计算精度
	 * @return boolean型,求解是否成功
	 */
	public boolean computeEvHBerg(double[] dblU, double[] dblV, int nMaxIt, double eps)
	{ 
		int m,it,i,j,k,l,ii,jj,kk,ll;
	    double b,c,w,g,xy,p,q,r,x,s,e,f,z,y;
	    
		int n = numColumns;

		it=0; 
		m=n;
	    while (m!=0)
	    { 
			l=m-1;
	        while ((l>0) && (Math.abs(elements[l*n+l-1]) > 
					eps*(Math.abs(elements[(l-1)*n+l-1])+Math.abs(elements[l*n+l])))) 
			  l=l-1;

	        ii=(m-1)*n+m-1; 
			jj=(m-1)*n+m-2;
	        kk=(m-2)*n+m-1; 
			ll=(m-2)*n+m-2;
	        if (l==m-1)
	        { 
				dblU[m-1]=elements[(m-1)*n+m-1]; 
				dblV[m-1]=0.0;
	            m=m-1; 
				it=0;
	        }
	        else if (l==m-2)
	        { 
				b=-(elements[ii]+elements[ll]);
	            c=elements[ii]*elements[ll]-elements[jj]*elements[kk];
	            w=b*b-4.0*c;
	            y=Math.sqrt(Math.abs(w));
	            if (w>0.0)
	            { 
					xy=1.0;
	                if (b<0.0) 
						xy=-1.0;
	                dblU[m-1]=(-b-xy*y)/2.0;
	                dblU[m-2]=c/dblU[m-1];
	                dblV[m-1]=0.0; dblV[m-2]=0.0;
	            }
	            else
	            { 
					dblU[m-1]=-b/2.0; 
					dblU[m-2]=dblU[m-1];
	                dblV[m-1]=y/2.0; 
					dblV[m-2]=-dblV[m-1];
	            }
	            
				m=m-2; 
				it=0;
	        }
	        else
	        { 
				if (it>=nMaxIt)
					return false;

	            it=it+1;
	            for (j=l+2; j<=m-1; j++)
					elements[j*n+j-2]=0.0;
	            for (j=l+3; j<=m-1; j++)
					elements[j*n+j-3]=0.0;
	            for (k=l; k<=m-2; k++)
	            { 
					if (k!=l)
	                { 
						p=elements[k*n+k-1]; 
						q=elements[(k+1)*n+k-1];
	                    r=0.0;
	                    if (k!=m-2) 
							r=elements[(k+2)*n+k-1];
	                }
	                else
	                { 
						x=elements[ii]+elements[ll];
	                    y=elements[ll]*elements[ii]-elements[kk]*elements[jj];
	                    ii=l*n+l; 
						jj=l*n+l+1;
	                    kk=(l+1)*n+l; 
						ll=(l+1)*n+l+1;
	                    p=elements[ii]*(elements[ii]-x)+elements[jj]*elements[kk]+y;
	                    q=elements[kk]*(elements[ii]+elements[ll]-x);
	                    r=elements[kk]*elements[(l+2)*n+l+1];
	                }
	                
					if ((Math.abs(p)+Math.abs(q)+Math.abs(r))!=0.0)
	                { 
						xy=1.0;
	                    if (p<0.0) 
							xy=-1.0;
	                    s=xy*Math.sqrt(p*p+q*q+r*r);
	                    if (k!=l) 
							elements[k*n+k-1]=-s;
	                    e=-q/s; 
						f=-r/s; 
						x=-p/s;
	                    y=-x-f*r/(p+s);
	                    g=e*r/(p+s);
	                    z=-x-e*q/(p+s);
	                    for (j=k; j<=m-1; j++)
	                    { 
							ii=k*n+j; 
							jj=(k+1)*n+j;
	                        p=x*elements[ii]+e*elements[jj];
	                        q=e*elements[ii]+y*elements[jj];
	                        r=f*elements[ii]+g*elements[jj];
	                        if (k!=m-2)
	                        { 
								kk=(k+2)*n+j;
	                            p=p+f*elements[kk];
	                            q=q+g*elements[kk];
	                            r=r+z*elements[kk]; 
								elements[kk]=r;
	                        }
	                        
							elements[jj]=q; elements[ii]=p;
	                    }
	                    
						j=k+3;
	                    if (j>=m-1) 
							j=m-1;
	                    
						for (i=l; i<=j; i++)
	                    { 
							ii=i*n+k; 
							jj=i*n+k+1;
	                        p=x*elements[ii]+e*elements[jj];
	                        q=e*elements[ii]+y*elements[jj];
	                        r=f*elements[ii]+g*elements[jj];
	                        if (k!=m-2)
	                        { 
								kk=i*n+k+2;
	                            p=p+f*elements[kk];
	                            q=q+g*elements[kk];
	                            r=r+z*elements[kk]; 
								elements[kk]=r;
	                        }
	                        
							elements[jj]=q; 
							elements[ii]=p;
	                    }
	                }
	            }
	        }
	    }
	    
		return true;
	}

	/**
	 * 求实对称矩阵特征值与特征向量的雅可比法
	 * 
	 * @param dblEigenValue - 一维数组,长度为矩阵的阶数,返回时存放特征值
	 * @param mtxEigenVector - 返回时存放特征向量矩阵,其中第i列为与数组
	 *                         dblEigenValue中第j个特征值对应的特征向量
	 * @param nMaxIt - 迭代次数
	 * @param eps - 计算精度
	 * @return boolean型,求解是否成功
	 */
	public boolean computeEvJacobi(double[] dblEigenValue, Matrix mtxEigenVector, int nMaxIt, double eps)
	{ 
		int i,j,p = 0,q = 0,u,w,t,s,l;
	    double fm,cn,sn,omega,x,y,d;
	    
		if (! mtxEigenVector.init(numColumns, numColumns))
			return false;

		l=1;
	    for (i=0; i<=numColumns-1; i++)
	    { 
			mtxEigenVector.elements[i*numColumns+i]=1.0;
	        for (j=0; j<=numColumns-1; j++)
				if (i!=j) 
					mtxEigenVector.elements[i*numColumns+j]=0.0;
	    }
	    
		while (true)
	    { 
			fm=0.0;
	        for (i=1; i<=numColumns-1; i++)
			{
				for (j=0; j<=i-1; j++)
				{ 
					d=Math.abs(elements[i*numColumns+j]);
					if ((i!=j) && (d>fm))
					{ 
						fm=d; 
						p=i; 
						q=j;
					}
				}
			}

	        if (fm<eps)
			{
				for (i=0; i<numColumns; ++i)
					dblEigenValue[i] = getElement(i,i);
				return true;
			}

	        if (l>nMaxIt)  
				return false;
	        
			l=l+1;
	        u=p*numColumns+q; 
			w=p*numColumns+p; 
			t=q*numColumns+p; 
			s=q*numColumns+q;
	        x=-elements[u]; 
			y=(elements[s]-elements[w])/2.0;
	        omega=x/Math.sqrt(x*x+y*y);

	        if (y<0.0) 
				omega=-omega;

	        sn=1.0+Math.sqrt(1.0-omega*omega);
	        sn=omega/Math.sqrt(2.0*sn);
	        cn=Math.sqrt(1.0-sn*sn);
	        fm=elements[w];
	        elements[w]=fm*cn*cn+elements[s]*sn*sn+elements[u]*omega;
	        elements[s]=fm*sn*sn+elements[s]*cn*cn-elements[u]*omega;
	        elements[u]=0.0; 
			elements[t]=0.0;
	        for (j=0; j<=numColumns-1; j++)
			{
				if ((j!=p) && (j!=q))
				{ 
					u=p*numColumns+j; w=q*numColumns+j;
					fm=elements[u];
					elements[u]=fm*cn+elements[w]*sn;
					elements[w]=-fm*sn+elements[w]*cn;
				}
			}

	        for (i=0; i<=numColumns-1; i++)
			{
				if ((i!=p) && (i!=q))
	            { 
					u=i*numColumns+p; 
					w=i*numColumns+q;
					fm=elements[u];
					elements[u]=fm*cn+elements[w]*sn;
					elements[w]=-fm*sn+elements[w]*cn;
	            }
			}

	        for (i=0; i<=numColumns-1; i++)
	        { 
				u=i*numColumns+p; 
				w=i*numColumns+q;
	            fm=mtxEigenVector.elements[u];
	            mtxEigenVector.elements[u]=fm*cn+mtxEigenVector.elements[w]*sn;
	            mtxEigenVector.elements[w]=-fm*sn+mtxEigenVector.elements[w]*cn;
	        }
	    }
	}

	/**
	 * 求实对称矩阵特征值与特征向量的雅可比过关法
	 * 
	 * @param dblEigenValue - 一维数组,长度为矩阵的阶数,返回时存放特征值
	 * @param mtxEigenVector - 返回时存放特征向量矩阵,其中第i列为与数组
	 *                         dblEigenValue中第j个特征值对应的特征向量
	 * @param eps - 计算精度
	 * @return boolean型,求解是否成功
	 */
	public boolean computeEvJacobi(double[] dblEigenValue, Matrix mtxEigenVector, double eps)
	{ 
		int i,j,p,q,u,w,t,s;
	    double ff,fm,cn,sn,omega,x,y,d;
	    
		if (! mtxEigenVector.init(numColumns, numColumns))
			return false;

		for (i=0; i<=numColumns-1; i++)
	    { 
			mtxEigenVector.elements[i*numColumns+i]=1.0;
	        for (j=0; j<=numColumns-1; j++)
				if (i!=j) 
					mtxEigenVector.elements[i*numColumns+j]=0.0;
	    }
	    
		ff=0.0;
	    for (i=1; i<=numColumns-1; i++)
		{
			for (j=0; j<=i-1; j++)
			{ 
				d=elements[i*numColumns+j]; 
				ff=ff+d*d; 
			}
		}

	    ff=Math.sqrt(2.0*ff);
		ff=ff/(1.0*numColumns);

		boolean nextLoop = false;
		while (true)
		{
			for (i=1; i<=numColumns-1; i++)
			{
				for (j=0; j<=i-1; j++)
				{ 
					d=Math.abs(elements[i*numColumns+j]);
					if (d>ff)
					{ 
						p=i; 
						q=j;

						u=p*numColumns+q; 
						w=p*numColumns+p; 
						t=q*numColumns+p; 
						s=q*numColumns+q;
						x=-elements[u]; 
						y=(elements[s]-elements[w])/2.0;
						omega=x/Math.sqrt(x*x+y*y);
						if (y<0.0) 
							omega=-omega;
					    
						sn=1.0+Math.sqrt(1.0-omega*omega);
						sn=omega/Math.sqrt(2.0*sn);
						cn=Math.sqrt(1.0-sn*sn);
						fm=elements[w];
						elements[w]=fm*cn*cn+elements[s]*sn*sn+elements[u]*omega;
						elements[s]=fm*sn*sn+elements[s]*cn*cn-elements[u]*omega;
						elements[u]=0.0; elements[t]=0.0;
					    
						for (j=0; j<=numColumns-1; j++)
						{
							if ((j!=p)&&(j!=q))
							{ 
								u=p*numColumns+j; 
								w=q*numColumns+j;
								fm=elements[u];
								elements[u]=fm*cn+elements[w]*sn;
								elements[w]=-fm*sn+elements[w]*cn;
							}
						}

						for (i=0; i<=numColumns-1; i++)
						{
							if ((i!=p)&&(i!=q))
							{ 
								u=i*numColumns+p; 
								w=i*numColumns+q;
								fm=elements[u];
								elements[u]=fm*cn+elements[w]*sn;
								elements[w]=-fm*sn+elements[w]*cn;
							}
						}
					    
						for (i=0; i<=numColumns-1; i++)
						{ 
							u=i*numColumns+p; 
							w=i*numColumns+q;
							fm=mtxEigenVector.elements[u];
							mtxEigenVector.elements[u]=fm*cn+mtxEigenVector.elements[w]*sn;
							mtxEigenVector.elements[w]=-fm*sn+mtxEigenVector.elements[w]*cn;
						}

						nextLoop = true;
						break;
					}
				}

				if (nextLoop)
					break;
			}
		        
			if (nextLoop)
			{
				nextLoop = fa

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -