📄 xform.c
字号:
/*This file contains definitions for functions to compute transforms fromimage feature correspondencesCopyright (C) 2006 Rob Hess <hess@eecs.oregonstate.edu>@version 1.1.1-20070330*/#include "xform.h"#include "imgfeatures.h"#include "utils.h"#include <cxcore.h>#include <gsl/gsl_sf.h>#include <gsl/gsl_rng.h>#include <gsl/gsl_randist.h>#include <time.h>
/************************* Local Function Prototypes *************************/static __inline struct feature* get_match( struct feature*, int );int get_matched_features( struct feature*, int, int, struct feature*** );int calc_min_inliers( int, int, double, double );struct feature** draw_ransac_sample( struct feature**, int, int, gsl_rng* );void extract_corresp_pts( struct feature**, int, int, CvPoint2D64f**, CvPoint2D64f** );int find_consensus( struct feature**, int, int, CvMat*, ransac_err_fn, double, struct feature*** );static __inline void release_mem( CvPoint2D64f*, CvPoint2D64f*,struct feature** );/********************** Functions prototyped in xform.h **********************//*Calculates a best-fit image transform from image feature correspondences
using RANSAC.
For more information refer to:
Fischler, M. A. and Bolles, R. C. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
<EM>Communications of the ACM, 24</EM>, 6 (1981), pp. 381--395.
@param features an array of features; only features with a non-NULL match
of type mtype are used in homography computation
@param n number of features in feat
@param mtype determines which of each feature's match fields to use
for model computation; should be one of FEATURE_FWD_MATCH,
FEATURE_BCK_MATCH, or FEATURE_MDL_MATCH; if this is FEATURE_MDL_MATCH,
correspondences are assumed to be between a feature's img_pt field
and its match's mdl_pt field, otherwise correspondences are assumed to
be between the the feature's img_pt field and its match's img_pt field
@param xform_fn pointer to the function used to compute the desired
transformation from feature correspondences
@param m minimum number of correspondences necessary to instantiate the
model computed by xform_fn
@param p_badxform desired probability that the final transformation
returned by RANSAC is corrupted by outliers (i.e. the probability that
no samples of all inliers were drawn)
@param err_fn pointer to the function used to compute a measure of error
between putative correspondences and a computed model
@param err_tol correspondences within this distance of a computed model are
considered as inliers
@param inliers if not NULL, output as an array of pointers to the final
set of inliers
@param n_in if not NULL and \a inliers is not NULL, output as the final
number of inliers
@return Returns a transformation matrix computed using RANSAC or NULL
on error or if an acceptable transform could not be computed.*/CvMat* ransac_xform( struct feature* features, int n, int mtype, ransac_xform_fn xform_fn, int m, double p_badxform, ransac_err_fn err_fn, double err_tol,struct feature*** inliers, int* n_in ){ struct feature** matched, ** sample, ** consensus, ** consensus_max = NULL; struct ransac_data* rdata; CvPoint2D64f* pts, * mpts; CvMat* M = NULL; gsl_rng* rng; double p, in_frac = RANSAC_INLIER_FRAC_EST; int i, nm, in, in_min, in_max = 0, k = 0; nm = get_matched_features( features, n, mtype, &matched ); if( nm < m ) { fprintf( stderr, "Warning: not enough matches to compute xform, %s" \ " line %d\n", __FILE__, __LINE__ ); goto end; } /* initialize random number generator */ rng = gsl_rng_alloc( gsl_rng_mt19937 ); gsl_rng_set( rng, time(NULL) ); in_min = calc_min_inliers( nm, m, RANSAC_PROB_BAD_SUPP, p_badxform ); p = pow( 1.0 - pow( in_frac, m ), k ); i = 0; while( p > p_badxform ) { sample = draw_ransac_sample( matched, nm, m, rng ); extract_corresp_pts( sample, m, mtype, &pts, &mpts ); M = xform_fn( pts, mpts, m ); if( ! M ) goto iteration_end; in = find_consensus( matched, nm, mtype, M, err_fn, err_tol, &consensus); if( in > in_max ) { if( consensus_max ) free( consensus_max ); consensus_max = consensus; in_max = in; in_frac = (double)in_max / nm; } else free( consensus ); cvReleaseMat( &M );iteration_end: release_mem( pts, mpts, sample ); p = pow( 1.0 - pow( in_frac, m ), ++k ); } /* calculate final transform based on best consensus set */ if( in_max >= in_min ) { extract_corresp_pts( consensus_max, in_max, mtype, &pts, &mpts ); M = xform_fn( pts, mpts, in_max ); in = find_consensus( matched, nm, mtype, M, err_fn, err_tol, &consensus); cvReleaseMat( &M ); release_mem( pts, mpts, consensus_max ); extract_corresp_pts( consensus, in, mtype, &pts, &mpts ); M = xform_fn( pts, mpts, in ); if( inliers ) { *inliers = consensus; consensus = NULL; } if( n_in ) *n_in = in; release_mem( pts, mpts, consensus ); } else if( consensus_max ) { if( inliers ) *inliers = NULL; if( n_in ) *n_in = 0; free( consensus_max ); } gsl_rng_free( rng );end: for( i = 0; i < nm; i++ ) { rdata = feat_ransac_data( matched[i] ); matched[i]->feature_data = rdata->orig_feat_data; free( rdata ); } free( matched ); return M;}/*Calculates a least-squares planar homography from point correspondeces.@param pts array of points@param mpts array of corresponding points; each pts[i], i=0..n-1, corresponds to mpts[i]@param n number of points in both pts and mpts; must be at least 4@return Returns the 3 x 3 least-squares planar homography matrix that transforms points in pts to their corresponding points in mpts or NULL if fewer than 4 correspondences were provided*/CvMat* lsq_homog( CvPoint2D64f* pts, CvPoint2D64f* mpts, int n ){ CvMat* H, * A, * B, X;
double x[9]; int i;
if( n < 4 ) { fprintf( stderr, "Warning: too few points in lsq_homog(), %s line %d\n", __FILE__, __LINE__ ); return NULL; } /* set up matrices so we can unstack homography into X; AX = B */ A = cvCreateMat( 2*n, 8, CV_64FC1 ); B = cvCreateMat( 2*n, 1, CV_64FC1 ); X = cvMat( 8, 1, CV_64FC1, x ); H = cvCreateMat(3, 3, CV_64FC1); cvZero( A ); for( i = 0; i < n; i++ ) { cvmSet( A, i, 0, pts[i].x ); cvmSet( A, i+n, 3, pts[i].x ); cvmSet( A, i, 1, pts[i].y ); cvmSet( A, i+n, 4, pts[i].y ); cvmSet( A, i, 2, 1.0 ); cvmSet( A, i+n, 5, 1.0 ); cvmSet( A, i, 6, -pts[i].x * mpts[i].x ); cvmSet( A, i, 7, -pts[i].y * mpts[i].x ); cvmSet( A, i+n, 6, -pts[i].x * mpts[i].y ); cvmSet( A, i+n, 7, -pts[i].y * mpts[i].y ); cvmSet( B, i, 0, mpts[i].x ); cvmSet( B, i+n, 0, mpts[i].y ); } cvSolve( A, B, &X, CV_SVD ); x[8] = 1.0; X = cvMat( 3, 3, CV_64FC1, x ); cvConvert( &X, H );
cvReleaseMat( &A );
cvReleaseMat( &B );
return H;}/*Calculates the transfer error between a point and its correspondence fora given homography, i.e. for a point x, it's correspondence x', andhomography H, computes d(x', Hx)^2.@param pt a point@param mpt pt's correspondence@param H a homography matrix@return Returns the transfer error between pt and mpt given H*/double homog_xfer_err( CvPoint2D64f pt, CvPoint2D64f mpt, CvMat* H ){ CvPoint2D64f xpt = persp_xform_pt( pt, H ); return sqrt( dist_sq_2D( xpt, mpt ) );}/*Performs a perspective transformation on a single point. That is, for apoint (x, y) and a 3 x 3 matrix T this function returns the point(u, v), where[x' y' w']^T = T * [x y 1]^T,and(u, v) = (x'/w', y'/w').Note that affine transforms are a subset of perspective transforms.@param pt a 2D point@param T a perspective transformation matrix@return Returns the point (u, v) as above.*/CvPoint2D64f persp_xform_pt( CvPoint2D64f pt, CvMat* T ){ CvMat XY, UV; double xy[3] = { pt.x, pt.y, 1.0 }, uv[3] = { 0 }; CvPoint2D64f rslt; cvInitMatHeader( &XY, 3, 1, CV_64FC1, xy, CV_AUTOSTEP ); cvInitMatHeader( &UV, 3, 1, CV_64FC1, uv, CV_AUTOSTEP ); cvMatMul( T, &XY, &UV ); rslt = cvPoint2D64f( uv[0] / uv[2], uv[1] / uv[2] ); return rslt;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -