📄 lfgauss.m
字号:
% File : lfgauss for loadflow
% Program latihan penggunaan MATLAB dalam sistem tenaga listrik
% Power flow solution by Gauss-Seidel method
% Copyright (c) 1998 by H. Saadat
Vm=0; delta=0; yload=0; deltad =0;
nbus = length(busdata(:,1));
for k=1:nbus
n=busdata(k,1);
kb(n)=busdata(k,2); Vm(n)=busdata(k,3); delta(n)=busdata(k, 4);
Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); Pg(n)=busdata(k,7); Qg(n) = busdata(k,8);
Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10);
Qsh(n)=busdata(k, 11);
if Vm(n) <= 0 Vm(n) = 1.0; V(n) = 1 + j*0;
else delta(n) = pi/180*delta(n);
V(n) = Vm(n)*(cos(delta(n)) + j*sin(delta(n)));
P(n)=(Pg(n)-Pd(n))/basemva;
Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva;
S(n) = P(n) + j*Q(n);
end
DV(n)=0;
end
num = 0; AcurBus = 0; converge = 1;
Vc = zeros(nbus,1)+j*zeros(nbus,1); Sc = zeros(nbus,1)+j*zeros(nbus,1);
while exist('accel')~=1
accel = 1.3;
end
while exist('accuracy')~=1
accuracy = 0.001;
end
while exist('basemva')~=1
basemva= 100;
end
while exist('maxiter')~=1
maxiter = 100;
end
iter=0;
maxerror=10;
while maxerror >= accuracy & iter <= maxiter
iter=iter+1;
for n = 1:nbus;
YV = 0+j*0;
for L = 1:nbr;
if nl(L) == n, k=nr(L);
YV = YV + Ybus(n,k)*V(k);
elseif nr(L) == n, k=nl(L);
YV = YV + Ybus(n,k)*V(k);
end
end
Sc = conj(V(n))*(Ybus(n,n)*V(n) + YV) ;
Sc = conj(Sc);
DP(n) = P(n) - real(Sc);
DQ(n) = Q(n) - imag(Sc);
if kb(n) == 1
S(n) =Sc; P(n) = real(Sc); Q(n) = imag(Sc); DP(n) =0; DQ(n)=0;
Vc(n) = V(n);
elseif kb(n) == 2
Q(n) = imag(Sc); S(n) = P(n) + j*Q(n);
if Qmax(n) ~= 0
Qgc = Q(n)*basemva + Qd(n) - Qsh(n);
if abs(DQ(n)) <= .005 & iter >= 10 % After 10 iterations
if DV(n) <= 0.045 % the Mvar of generator buses are
if Qgc < Qmin(n), % tested. If not within limits Vm(n)
Vm(n) = Vm(n) + 0.005; % is changed in steps of 0.005 pu
DV(n) = DV(n)+.005; % up to .05 pu in order to bring
elseif Qgc > Qmax(n), % the generator Mvar within the
Vm(n) = Vm(n) - 0.005; % specified limits.
DV(n)=DV(n)+.005; end
else, end
else,end
else,end
end
if kb(n) ~= 1
Vc(n) = (conj(S(n))/conj(V(n)) - YV )/ Ybus(n,n);
else, end
if kb(n) == 0
V(n) = V(n) + accel*(Vc(n)-V(n));
elseif kb(n) == 2
VcI = imag(Vc(n));
VcR = sqrt(Vm(n)^2 - VcI^2);
Vc(n) = VcR + j*VcI;
V(n) = V(n) + accel*(Vc(n) -V(n));
end
end
maxerror=max( max(abs(real(DP))), max(abs(imag(DQ))) );
if iter == maxiter & maxerror > accuracy
fprintf('\nWARNING: Iterative solution did not converged after ')
fprintf('%g', iter), fprintf(' iterations.\n\n')
fprintf('Press Enter to terminate the iterations and print the results \n')
converge = 0; pause, else, end
end
if converge ~= 1
tech= (' ITERATIVE SOLUTION DID NOT CONVERGE'); else,
tech=(' Power Flow Solution by Gauss-Seidel Method');
end
k=0;
for n = 1:nbus
Vm(n) = abs(V(n)); deltad(n) = angle(V(n))*180/pi;
if kb(n) == 1
S(n)=P(n)+j*Q(n);
Pg(n) = P(n)*basemva + Pd(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
k=k+1;
Pgg(k)=Pg(n);
elseif kb(n) ==2
k=k+1;
Pgg(k)=Pg(n);
S(n)=P(n)+j*Q(n);
Qg(n) = Q(n)*basemva + Qd(n) - Qsh(n);
end
yload(n) = (Pd(n)- j*Qd(n)+j*Qsh(n))/(basemva*Vm(n)^2);
end
Pgt = sum(Pg); Qgt = sum(Qg); Pdt = sum(Pd); Qdt = sum(Qd); Qsht = sum(Qsh);
busdata(:,3)=Vm'; busdata(:,4)=deltad';
clear AcurBus DP DQ DV L Sc Vc VcI VcR YV converge delta
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -