⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 new_in_3_0.html

📁 模型参考自适应程序。用于无速度传感器
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>New features in MatlabBGL version 3.0</title>      <meta name="generator" content="MATLAB 7.5">      <meta name="date" content="2008-10-22">      <meta name="m-file" content="new_in_3_0">      <link rel="stylesheet" type="text/css" href="../site.css"><style>body {  background: white;  color: black;}p.footer {  text-align: right;  font-size: xx-small;  font-weight: lighter;  font-style: italic;  color: gray;}pre.codeinput {  margin-left: 20px;  margin-top: 10px;  margin-bottom: 10px;  background-color: #bbbbbb;  border: solid 1px;  font-size: 10pt;  width: 620px;}p{	margin: 10px;}hr{    color: #bbbbbb;    height: 4;}.main{	border-left-style: solid;	margin-left: 100px;		width: 650px;}.upwhitesq{    position: relative;    left: -5px;    top: -8px;    background: white;  }.downwhitesq{    position: relative;    left: 95px;    bottom: 10px;    background: white;  }img{	text-align: center;}span.keyword {color: #0000FF}span.comment {color: #228B22}span.string {color: #A020F0}span.untermstring {color: #B20000}span.syscmd {color: #B28C00}pre.showbuttons {  margin-left: 30px;  border: solid black 2px;  padding: 4px;  background: #EBEFF3;}pre.codeoutput {  margin-left: 20px;  margin-top: 10px;  margin-bottom: 10px;  font-size: 10pt;  width: 520px;}pre.error {  color: red;}.intro {  width: 650px;}    </style></head>   <body>      <h1>New features in MatlabBGL version 3.0</h1>      <introduction>         <div class="intro">            <p>Although MatlabBGL 3.0 was never officially released, here are some of it's key features.</p>         </div>      </introduction>      <h2>Contents</h2>      <div>         <ul>            <li><a href="#1">Better performance</a></li>            <li><a href="#4">Graph construction functions</a></li>            <li><a href="#6">Targeted search</a></li>            <li><a href="#8">Edge weights</a></li>            <li><a href="#9">Matching algorithms</a></li>            <li><a href="#10">New graph statistics</a></li>            <li><a href="#14">Max-flow algorithms</a></li>            <li><a href="#15">Dominator tree</a></li>            <li><a href="#16">New utility functions</a></li>         </ul>      </div>      <div class="main">         <h2>Better performance<a name="1"></a></h2>         <p>We redid the backend interface to the BGL routines.  This optimization gave a considerable performance increase.</p>         <p>test_benchmark on MatlabBGL 2.1</p><pre>2008-10-07, Version 2.1, Matlab 2007b, boost 1.33.0,  g++-3.4 (lib), gcc-? (mex)</pre><pre>       airfoil       west    cs-stan    minneso      tapirlarge   0.223 s    0.024 s    0.390 s    0.073 s    0.046 s  med     NaN s    0.955 s      NaN s      NaN s    6.621 ssmall     NaN s    0.758 s      NaN s      NaN s      NaN s</pre><p>test_benchmark on MatlabBGL 3.0</p><pre>2008-10-07: Version 3.0, Matlab 2007b, boost 1.34.1,  g++-4.0 (lib), gcc-? (mex)</pre><pre>       airfoil       west    cs-stan    minneso      tapirlarge   0.183 s    0.017 s    0.222 s    0.048 s    0.037 s  med     NaN s    0.593 s      NaN s      NaN s    3.901 ssmall     NaN s    0.543 s      NaN s      NaN s      NaN s</pre><hr>         <div class="upwhitesq">&nbsp;</div>         <h2>Graph construction functions<a name="4"></a></h2>         <p>MatlabBGL 2.1 had a few graph construction functions.  MatlabBGL 3.0 adds the grid_graph function for line, grid, cube, and            hyper-cube graphs         </p><pre class="codeinput">[G xy] = grid_graph(6,5); gplot(G,xy,<span class="string">'.-'</span>);</pre><img vspace="5" hspace="5" src="new_in_3_0_01.png"> <p>In more dimensions...</p><pre class="codeinput">[G xyz] = grid_graph(6,5,3);G = grid_graph(2,2,2,2);G = grid_graph([3,3,3,3,3]);</pre><hr>         <div class="upwhitesq">&nbsp;</div>         <h2>Targeted search<a name="6"></a></h2>         <p>The graph search algorithms now let you specify a target vertex that will stop the search early if possible.</p><pre class="codeinput">A = grid_graph(50,50);tic; d = bfs(A,1,struct()); toctic; d = bfs(A,1,struct(<span class="string">'target'</span>,2)); toc</pre><pre class="codeoutput">Elapsed time is 0.001523 seconds.Elapsed time is 0.000704 seconds.</pre><p>Also implemented for astar_search, shortest_paths, and dfs.</p>         <hr>         <div class="upwhitesq">&nbsp;</div>         <h2>Edge weights<a name="8"></a></h2>         <p>In Matlab, there is no way to create a sparse matrix with a structural non-zero (used for MatlabBGL edges) and a value of            0 (used for MatlabBGL weights).  Consequently, it's impossible to run algorithms on graphs where the edge weights are 0.         </p>         <p>Consequently, some algorithms now take an 'edge_weight' parameter that allows you to provide a different set of edge weights            which allow structural non-zeros and 0 values.         </p>         <p>This behavior is a bit complicated, so see the REWEIGHTED_GRAPHS example for more information.</p>         <hr>         <div class="upwhitesq">&nbsp;</div>         <h2>Matching algorithms<a name="9"></a></h2>         <p>While maximum cardinality bipartite matching is just a call to max-flow, general graph matching algorithms are not.  MatlabBGL            3.0 contains the matching algorithms in Boost 1.34.0.         </p><pre class="codeinput">load(<span class="string">'../graphs/matching_example.mat'</span>);m = matching(A);sum(m&gt;0)/2 <span class="comment">% matching cardinality should be 8</span></pre><pre class="codeoutput">ans =     8</pre><hr>         <div class="upwhitesq">&nbsp;</div>         <h2>New graph statistics<a name="10"></a></h2>         <p>We added a few new statistics functions.</p>         <p>Test for a topological ordering of a graph (only applies to DAGs or directed acyclic graphs)</p><pre class="codeinput">n = 10; A = sparse(1:n-1, 2:n, 1, n, n); <span class="comment">% construct a simple dag</span>p = topological_order(A);test_dag(A)test_dag(cycle_graph(6)) <span class="comment">% a cycle is not acyclic!</span></pre><pre class="codeoutput">ans =     1ans =     0</pre><p>Core numbers can help identify important regions in a graph.  MatlabBGL includes weighted and directed core numbers.  Also,            the algorithms return the removal time of a particular vertex, which gives interesting graph orderings.         </p><pre class="codeinput"><span class="comment">% See EXAMPLES/CORE_NUMBERS_EXAMPLE</span></pre><p>New algorithms for clustering_coefficients on weighted and directed graphs.</p><pre class="codeinput">A = clique_graph(6) - cycle_graph(6); <span class="comment">% A is a clique - a directed cycle</span>ccfs = clustering_coefficients(A)B = sprand(A);ccfs = clustering_coefficients(B)C = A|A'; <span class="comment">% now it's a full clique again</span>ccfs = clustering_coefficients(C)</pre><pre class="codeoutput">ccfs =    0.7600    0.7600    0.7600    0.7600    0.7600    0.7600ccfs =    0.4543    0.4064    0.4363    0.4310    0.4109    0.4180ccfs =     1     1     1

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -