📄 script_ber_mimo_zf_sic_bpsk_rayleigh_channel.m
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% All rights reserved by Krishna Pillai, http://www.dsplog.com% The file may not be re-distributed without explicit authorization% from Krishna Pillai.% Checked for proper operation with Octave Version 3.0.0% Author : Krishna Pillai% Email : krishna@dsplog.com% Version : 1.0% Date : 09 Novemeber 2008% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Script for computing the BER for BPSK modulation in a% Rayleigh fading channel with 2 Tx, 2Rx MIMO channel % Zero Forcing Equalization with Successive Interference % Cancellation (ZF-SIC)clearN = 10^6; % number of bits or symbolsEb_N0_dB = [0:25]; % multiple Eb/N0 valuesnTx = 2;nRx = 2;for ii = 1:length(Eb_N0_dB) % Transmitter ip = rand(1,N)>0.5; % generating 0,1 with equal probability s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 0 sMod = kron(s,ones(nRx,1)); % sMod = reshape(sMod,[nRx,nTx,N/nTx]); % grouping in [nRx,nTx,N/NTx ] matrix h = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + j*randn(nRx,nTx,N/nTx)]; % Rayleigh channel n = 1/sqrt(2)*[randn(nRx,N/nTx) + j*randn(nRx,N/nTx)]; % white gaussian noise, 0dB variance % Channel and noise Noise addition y = squeeze(sum(h.*sMod,2)) + 10^(-Eb_N0_dB(ii)/20)*n; % Receiver % Forming the ZF equalization matrix W = inv(H^H*H)*H^H % H^H*H is of dimension [nTx x nTx]. In this case [2 x 2] % Inverse of a [2x2] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a] hCof = zeros(2,2,N/nTx) ; hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1) ; % d term hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1) ; % a term hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:))); % ad-bc term hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx); % formatting for division hInv = hCof./hDen; % inv(H^H*H) hMod = reshape(conj(h),nRx,N); % H^H operation yMod = kron(y,ones(1,2)); % formatting the received symbol for equalization yMod = sum(hMod.*yMod,1); % H^H * y yMod = kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y % receiver - hard decision decoding on second spatial dimension ipHat2SS = real(yHat(2:2:end))>0; ipHatMod2SS = 2*ipHat2SS-1; ipHatMod2SS = kron(ipHatMod2SS,ones(nRx,1)); ipHatMod2SS = reshape(ipHatMod2SS,[nRx,1,N/nTx]); % new received symbol - removing the effect from second spatial dimension h2SS = h(:,2,:); % channel in the second spatial dimension r = y - squeeze(h2SS.*ipHatMod2SS); % maximal ratio combining - for symbol in the first spatial dimension h1SS = squeeze(h(:,1,:)); yHat1SS = sum(conj(h1SS).*r,1)./sum(h1SS.*conj(h1SS),1); yHat(1:2:end) = yHat1SS; % receiver - hard decision decoding ipHat = real(yHat)>0; % counting the errors nErr(ii) = size(find([ip- ipHat]),2);endsimBer = nErr/N; % simulated berEbN0Lin = 10.^(Eb_N0_dB/10);theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p)); close allfiguresemilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2);hold onsemilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2);semilogy(Eb_N0_dB,simBer,'mo-','LineWidth',2);axis([0 25 10^-5 0.5])grid onlegend('theory (nTx=2,nRx=2, ZF)', 'theory (nTx=1,nRx=2, MRC)', 'sim (nTx=2, nRx=2, ZF-SIC)');xlabel('Average Eb/No,dB');ylabel('Bit Error Rate');title('BER for BPSK modulation with 2x2 MIMO and ZF-SIC equalizer (Rayleigh channel)');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -