⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 script_ber_mimo_zf_bpsk_rayleigh_channel.m

📁 script_ber_mimo_zf_bpsk_rayleigh_channel montre la performance de egaliseur zf avec mimo
💻 M
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% All rights reserved by Krishna Pillai, http://www.dsplog.com% The file may not be re-distributed without explicit authorization% from Krishna Pillai.% Checked for proper operation with Octave Version 3.0.0% Author        : Krishna Pillai% Email         : krishna@dsplog.com% Version       : 1.0% Date          : 23rd October 2008% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Script for computing the BER for BPSK modulation in a% Rayleigh fading channel with 2 Tx, 2Rx MIMO channel % Zero Forcing equalizationclearN = 10^6; % number of bits or symbolsEb_N0_dB = [0:25]; % multiple Eb/N0 valuesnTx = 2;nRx = 2;for ii = 1:length(Eb_N0_dB)    % Transmitter    ip = rand(1,N)>0.5; % generating 0,1 with equal probability    s = 2*ip-1; % BPSK modulation 0 -> -1; 1 -> 0    sMod = kron(s,ones(nRx,1)); %     sMod = reshape(sMod,[nRx,nTx,N/nTx]); % grouping in [nRx,nTx,N/NTx ] matrix    h = 1/sqrt(2)*[randn(nRx,nTx,N/nTx) + j*randn(nRx,nTx,N/nTx)]; % Rayleigh channel    n = 1/sqrt(2)*[randn(nRx,N/nTx) + j*randn(nRx,N/nTx)]; % white gaussian noise, 0dB variance    % Channel and noise Noise addition    y = squeeze(sum(h.*sMod,2)) + 10^(-Eb_N0_dB(ii)/20)*n;    % Receiver    % Forming the Zero Forcing equalization matrix W = inv(H^H*H)*H^H    % H^H*H is of dimension [nTx x nTx]. In this case [2 x 2]     % Inverse of a [2x2] matrix [a b; c d] = 1/(ad-bc)[d -b;-c a]    hCof = zeros(2,2,N/nTx)  ;     hCof(1,1,:) = sum(h(:,2,:).*conj(h(:,2,:)),1);  % d term    hCof(2,2,:) = sum(h(:,1,:).*conj(h(:,1,:)),1);  % a term    hCof(2,1,:) = -sum(h(:,2,:).*conj(h(:,1,:)),1); % c term    hCof(1,2,:) = -sum(h(:,1,:).*conj(h(:,2,:)),1); % b term    hDen = ((hCof(1,1,:).*hCof(2,2,:)) - (hCof(1,2,:).*hCof(2,1,:))); % ad-bc term    hDen = reshape(kron(reshape(hDen,1,N/nTx),ones(2,2)),2,2,N/nTx);  % formatting for division    hInv = hCof./hDen; % inv(H^H*H)    hMod =  reshape(conj(h),nRx,N); % H^H operation        yMod = kron(y,ones(1,2)); % formatting the received symbol for equalization    yMod = sum(hMod.*yMod,1); % H^H * y     yMod =  kron(reshape(yMod,2,N/nTx),ones(1,2)); % formatting    yHat = sum(reshape(hInv,2,N).*yMod,1); % inv(H^H*H)*H^H*y       % receiver - hard decision decoding    ipHat = real(yHat)>0;    % counting the errors    nErr(ii) = size(find([ip- ipHat]),2);endsimBer = nErr/N; % simulated berEbN0Lin = 10.^(Eb_N0_dB/10);theoryBer_nRx1 = 0.5.*(1-1*(1+1./EbN0Lin).^(-0.5)); p = 1/2 - 1/2*(1+1./EbN0Lin).^(-1/2);theoryBerMRC_nRx2 = p.^2.*(1+2*(1-p)); close allfiguresemilogy(Eb_N0_dB,theoryBer_nRx1,'bp-','LineWidth',2);hold onsemilogy(Eb_N0_dB,theoryBerMRC_nRx2,'kd-','LineWidth',2);semilogy(Eb_N0_dB,simBer,'mo-','LineWidth',2);axis([0 25 10^-5 0.5])grid onlegend('theory (nTx=1,nRx=1)', 'theory (nTx=1,nRx=2, MRC)', 'sim (nTx=2, nRx=2, ZF)');xlabel('Average Eb/No,dB');ylabel('Bit Error Rate');title('BER for BPSK modulation with 2x2 MIMO and ZF equalizer (Rayleigh channel)');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -