📄 mog_p.m
字号:
function p = mog_P(x,covtype,means,invcovs,priors)%MOG_P Compute the probability density of a Mixture of Gaussians%% P = MOG_P(X,COVTYPE,MEANS,INVCOVS,PRIORS)%% Calculate the probability density for all objects X for all of the% clusters of a mixture of Gaussians, characterized with the MEANS,% INVCOVS and PRIORS. COVTYPE indicates the shape of the covariance% matrix, and INVCOVS means that the *inverse* of the covariance% matrices is used! see mogdd.% Note that P is not normalized!%% See also: mog_dd, mog_init, mog_update% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% Get the useful parameters[N,d] = size(x);k = length(priors);p = zeros(N,k);% Depending on the covariance matrix, the p is computed differently:switch covtypecase 'sphr' % Spherical cov. matrices D = distm(x,means); sig = repmat(0.5*invcovs',N,1); Z = (sig/pi).^(d/2); p = Z.*exp(-D.*sig);case 'diag' % Diagonal cov.matrix with unequal variances Z = (2*pi).^(-d/2); sig = prod(sqrt(invcovs),2); for i=1:k dif = x - repmat(means(i,:),N,1); p(:,i) = Z*sig(i)*exp(-0.5*sum(dif.*dif.*repmat(invcovs(i,:),N,1) ,2)); endcase 'full' % Complete covariance matrix Z = (2*pi).^(-d/2); for i=1:k dif = x - repmat(means(i,:),N,1); c = squeeze(invcovs(i,:,:)); p(:,i) = sqrt(det(c))*Z*exp(-0.5*sum((dif*c).*dif,2)); endotherwise error('The inverse covariance matrix parameter is not well-defined');end% include the priors:p = p.*repmat(priors',N,1);return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -