⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dd_loglikelihood.m

📁 SVDD的工具箱
💻 M
字号:
function ll = dd_loglikelihood(x,w)%DD_LOGLIKELIHOOD%%    LL = DD_LOGLIKELIHOOD(X,W)%% Compute the loglikelihood LL for a density model W on dataset X. It is% assumed that you supply a sensible mapping W (gauss_dd, mog_dd,% parzen_dd ...). If not, you might get interesting outputs out...% Copyright: D.M.J. Tax, D.M.J.Tax@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% Do it the same as testc:% When no input arguments are given, we just return an empty mapping:if nargin==0		% Sometimes Prtools is crazy, but fun!:	ll = mapping(mfilename,'fixed');	returnelseif nargin == 1	% Now we are doing the actual work:		% check if we have a dataset	if isdataset(x)		% true labels		[nin,llin] = getnlab(x);		% the feature labels		llout = getfeatlab(x);		% match both labels:		m = size(x,1);		c = size(llout,1); % number of classes in out-labels		J = zeros(m,c);    % put 1 at the correct label pos.		for i=1:c          % go over all output labels			classlab = llout(i,:);			if ischar(classlab)				classlab = deblank(classlab);			end			k = strmatch(classlab,llin); % find the same objects in llin			if ~isempty(k)				I = find(nin==k);				J(I,i) = 1;			end		end		% now add the outputs:		if any(+x<0)			warning('dd_tools:LogNegativeOutputs',				'It seems the classifier is already log(p(x)), so no log is applied.');			ll = sum(sum(+x.*J))/m;		else			ll = sum(sum(log(+x).*J))/m;		end	else		% we don't have a dataset, so we cannot match the correct output,		% so now just add the output??		error('No dataset given, no idea what to do now.');	end	else	ismapping(w);	istrained(w);	if (nargout>1)		ll = feval(mfilename,x*w);	else		ll = feval(mfilename,x*w);	endendreturn

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -