📄 eigsvdgui.m
字号:
function D = eigsvdgui(A,job)
%EIGSVDGUI Demonstrate computation of matrix eigenvalues and singular values.
% EIGSVDGUI shows three variants of the QR algorithm.
%
% EIGSVDGUI(A) for square, nonsymmetric A, or EIGSVDGUI(A,'eig'), reduces
% A to Hessenberg form, then applies a double-shift, eigenvalue-preserving
% QR algorithm. The result is the real Schur block upper triangular form,
% with one-by-one diagonal blocks for real eigenvalues and two-by-two
% diagonal blocks for pairs of complex eigenvalues.
%
% EIGSVDGUI(A) for square, symmetric A, or EIGSVDGUI(A,'symm'), reduces
% the symmetric part, (A+A')/2, to tridiagonal form, then applies a
% single-shift, eigenvalue-preserving QR algorithm. The result is
% a diagonal matrix containing the eigenvalues, which are all real.
%
% EIGSVDGUI(A) for rectangular A, or EIGSVDGUI(A,'svd'), reduces A to
% bidiagonal form, then applies a single-shift QR algorithm that preserves
% the singular values. The result is a diagonal matrix containing the
% singular values.
%
% If A is symmetric and positive definite, the three variants compute
% the same final diagonal matrix by three different algorithms.
%
% D = EIGSVDGUI(...) returns the diagonal or Schur result.
if nargin < 1
A = randn(24,24);
job = 'symm';
elseif nargin < 2
if isequal(A,A')
job = 'symm';
elseif isequal(size(A),size(A'))
job = 'eig';
else
job = 'svd';
end
elseif isequal(A,'gcf')
A = get(gcf,'userdata');
end
shg
J = jet(256);
J(1,:) = get(gcf,'color');
set(gcf,'doublebuffer','on','colormap',J,'userdata',A, ...
'name',['eigsvdgui(A,''' job ''')'],'menu','none','numbertitle','off');
if isequal(job,'symm');
A = eiggui((A+A')/2);
elseif isequal(job,'eig')
A = eiggui(A);
else
A = svdgui(A);
end
eig = uicontrol('units','norm','pos',[.02,.02,.10,.04], ...
'string','eig','callback','eigsvdgui(''gcf'',''eig'')');
symm = uicontrol('units','norm','pos',[.14,.02,.10,.04], ...
'string','symm', 'callback','eigsvdgui(''gcf'',''symm'')');
svd = uicontrol('units','norm','pos',[.26,.02,.10,.04], ...
'string','svd', 'callback','eigsvdgui(''gcf'',''svd'')');
stop = uicontrol('units','norm','pos',[.38,.02,.10,.04], ...
'string','close','callback','close');
if ~isequal(size(A),size(A'))
set([eig,symm],'foreground',[.66 .66 .66],'callback',[])
end
if nargout > 0
D = A;
end
% -------------------------------------------
function A = eiggui(A)
scale = 256/sqrt(max(abs(diag(A'*A))));
imageh = image(ceil(scale*abs(A))+1);
daspect([1 1 1])
issymm = isequal(A,A');
iscmplx = ~isreal(A);
% Househoulder reduction to tridiagonal or Hessenberg form.
[n,n] = size(A);
for k = 1:n-2
% Introduce zeros below the subdiagonal in the k-th column.
u = A(:,k);
u(1:k) = 0;
sigma = norm(u);
if sigma ~= 0
if u(k+1) ~= 0, sigma = sign(u(k+1))*sigma; end
u(k+1) = u(k+1) + sigma;
rho = 1/(sigma'*u(k+1));
v = rho'*A*u;
w = (rho*u'*A)';
gamma = rho/2*u'*v;
v = v - gamma*u;
gamma = rho/2*u'*w;
w = w - gamma*u;
A = A - v*u' - u*w';
A(k+2:n,k) = 0;
if issymm, A(k,k+2:n) = 0; end
end
set(imageh,'cdata',ceil(scale*abs(A))+1)
pause(.1)
end
% Tridiagonal or Hessenberg QR algorithm.
it = 0;
titleh = title('0');
k = n;
while k > 1
% 1-by-1 convergence test.
if abs(A(k,k-1)) <= 2*eps*(abs(A(k-1,k-1)) + abs(A(k,k)))
A(k,k-1) = 0;
if issymm
A(k-1,k) = 0;
A(k,k) = real(A(k,k));
end
k = k-1;
else
% Wilkinson shift, eigenvalues of lower 2-by-2, A(k-1:k,k-1:k).
r = (A(k,k)-A(k-1,k-1))/(2*A(k,k-1));
s = r^2 + A(k-1,k)/A(k,k-1);
% Use single shift for real eigenvalues of real matrices
% and for all eigenvalues of complex matrices.
if iscmplx | s >= 0
% Single real shift, eigenvalue of 2-by-2 closest to A(k,k).
s = sqrt(s);
if r < 0, s = -s; end
if r+s ~= 0, s = A(k,k) + A(k-1,k)/(r+s); end
% Single QR step.
I = eye(k,k);
[Q,R] = qr(A(1:k,1:k) - s*I);
A(1:k,1:k) = R*Q + s*I;
it = it+1;
else
% Complex eigenvalues of real matrices.
% 2-by-2 convergence test.
if k == 2
k = 0;
elseif abs(A(k-1,k-2)) <= 2*eps*(abs(A(k-2,k-2)) + abs(A(k-1,k-1)))
A(k-1,k-2) = 0;
if issymm, A(k-2,k-1) = 0; end
k = k-2;
else
% Sum and product of eigenvalues of lower 2-by-2.
t = A(k-1,k-1) + A(k,k);
d = A(k-1,k-1)*A(k,k) - A(k,k-1)*A(k-1,k);
% Double QR step.
I = eye(k,k);
[Q,R] = qr(A(1:k,1:k)^2 - t*A(1:k,1:k) + d*I);
A(1:k,1:k) = triu(Q'*A(1:k,1:k)*Q,-1);
it = it+2;
end
end
end
if issymm, A(1:k,1:k) = tril(A(1:k,1:k),1); end
set(imageh,'cdata',ceil(scale*abs(A))+1)
set(titleh,'string',num2str(it))
pause(.1)
end
if issymm, A(1,1) = real(A(1,1)); end
% -------------------------------------------
function A = svdgui(A)
%SVDGUI Demonstrate the computation of the SVD.
% SVDGUI(A) shows the steps in the computation of the
% singular value decomposition of any real or complex matrix.
scale = 256/sqrt(max(abs(diag(A'*A))));
imageh = image(ceil(scale*abs(A))+1);
daspect([1 1 1])
% Househoulder reduction to bidiagonal form.
[m,n] = size(A);
for k = 1:min(m,n)
% Introduce zeros below the diagonal in the k-th column.
u = A(:,k);
u(1:k-1) = 0;
sigma = norm(u);
if sigma ~= 0
if u(k) ~= 0, sigma = sign(u(k))*sigma; end
u(k) = u(k) + sigma;
rho = 1/(sigma'*u(k));
v = rho*(u'*A);
A = A - u*v;
A(k+1:m,k) = 0;
end
set(imageh,'cdata',ceil(scale*abs(A))+1);
pause(.1)
% Introduce zeros to the right of the superdiagonal in the k-th row.
u = A(k,:);
u(1:k) = 0;
sigma = norm(u);
if sigma ~= 0
if u(k+1) ~= 0, sigma = sign(u(k+1))*sigma; end
u(k+1) = u(k+1) + sigma;
rho = 1/(sigma'*u(k+1));
v = rho*(A*u');
A = A - v*u;
A(k,k+2:n) = 0;
end
set(imageh,'cdata',ceil(scale*abs(A))+1);
pause(.1)
end
% Bidiagonal SVD QR iteration.
it = 0;
titleh = title('0');
k = min(m,n);
while k > 1
% Convergence test.
if abs(A(k-1,k)) <= 2*eps*(abs(A(k-1,k-1)) + abs(A(k,k)))
A(k-1,k) = 0;
k = k-1;
else
% One step of single shift QR iteration.
% Wilkinson shift, eigenvalue of lower 2-by-2 of A'*A.
T = A(1:k,1:k)'*A(1:k,1:k);
r = (T(k,k)-T(k-1,k-1))/(2*T(k,k-1));
s = sqrt(r^2 + T(k-1,k)/T(k,k-1));
if r < 0, s = -s; end
if r+s ~= 0, s = T(k,k) + T(k-1,k)/(r+s); end
I = eye(k,k);
[Q,R] = qr(T-s*I);
A(1:k,1:k) = A(1:k,1:k)*Q;
[Q,R] = qr(A(1:k,1:k));
A(1:k,1:k) = tril(R,1);
it = it+1;
end
set(imageh,'cdata',ceil(scale*abs(A))+1);
set(titleh,'string',num2str(it))
pause(.1)
end
A = abs(A);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -