📄 pctolsp3.c
字号:
#ifdef NEEDED
/**************************************************************************
*
* ROUTINE
* pctolsp3
*
* FUNCTION
*
* compute LSP from predictor polynomial and quantize it
*
* SYNOPSIS
* subroutine pctolsp3(a, freq, bits, findex)
*
* formal
*
* data I/O
* name type type function
* -------------------------------------------------------------------
* a float i a-polynomial a(0)=1
* freq float i/o lsp frequency array/
* output quantized frequency array
* bits int i bit allocation
* findex int o frequency index array
*
*
***************************************************************************
*
* DESCRIPTION
*
* Compte the LSPs using Chebyshev polynomials and then quantize.
*
* Taken from code written by Lionel Wolovitz, PSION PLC
*
***************************************************************************
*
* CALLED BY
*
* celp
*
* CALLS
*
*
**************************************************************************
*
* REFRENCES
*
* Peter Kabal and Ravi Prakash Ramachandran, "The Computation of
* Line Spectral Frequencies Using Chebyshev Polynomials," IEEE
* Transactions on Acoustics, Speech, and Signal Processing,
* Vol. ASSP-34, No. 6, December 1986
*
**************************************************************************/
/* Extracts of code to do LSP root finding from predictor coefficients, and
to convert back from roots to predictor coefficients. */
static float l3lsp[MAXNO][16] =
{
{0.01250000, 0.02125000, 0.02812500, 0.03125000,
0.03500000, 0.04250000, 0.05250000, 0.06250000},
{0.02625000, 0.02937500, 0.03312500, 0.03687500,
0.04062500, 0.04500000, 0.05000000, 0.05500000,
0.06000000, 0.06500000, 0.07000000, 0.07625000,
0.08375000, 0.09250000, 0.10125000, 0.11000000},
{0.05250000, 0.05750000, 0.06250000, 0.06750000,
0.07312500, 0.08000000, 0.08812500, 0.09687500,
0.10625000, 0.11875000, 0.13125000, 0.14375000,
0.15625000, 0.16875000, 0.18125000, 0.19375000},
{0.07750000, 0.08250000, 0.09000000, 0.09937500,
0.11000000, 0.12125000, 0.13500000, 0.14625000,
0.15875000, 0.17125000, 0.18375000, 0.19625000,
0.20875000, 0.22125000, 0.23375000, 0.24625000},
{0.12500000, 0.13125000, 0.14125000, 0.15125000,
0.16062500, 0.16875000, 0.17875000, 0.18875000,
0.19875000, 0.20875000, 0.21875000, 0.23125000,
0.24375000, 0.25625000, 0.26875000, 0.28125000},
{0.18375000, 0.19625000, 0.21125000, 0.22875000,
0.25000000, 0.27500000, 0.30000000, 0.32500000},
{0.22500000, 0.23500000, 0.24500000, 0.26250000,
0.28750000, 0.31000000, 0.33750000, 0.36250000},
{0.27812500, 0.30000000, 0.31562500, 0.33125000,
0.35000000, 0.36875000, 0.39375000, 0.41875000},
{0.34500000, 0.36000000, 0.37500000, 0.38750000,
0.40000000, 0.41375000, 0.42875000, 0.44375000},
{0.39875000, 0.40875000, 0.41875000, 0.42750000,
0.43625000, 0.44875000, 0.46375000, 0.47875000}
};
static float l3table[MAXNO][17] =
{
{ 0.99691746, 0.99110012, 0.98442723, 0.98078609,
0.97591778, 0.96455891, 0.94608763, 0.92388272,
-2.00000000, -2.00000000, -2.00000000, -2.00000000,
-2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
{ 0.98642983, 0.98301624, 0.97841983, 0.97328029,
0.96760046, 0.96029536, 0.95105858, 0.94088325,
0.92977943, 0.91775807, 0.90483103, 0.88741813,
0.86471905, 0.83581413, 0.80438365, 0.77052259, -2.0},
{ 0.94608763, 0.93544674, 0.92388272, 0.91140698,
0.89629734, 0.87631182, 0.85058793, 0.82040883,
0.78532570, 0.73433325, 0.67881359, 0.61910900,
0.55558755, 0.48864087, 0.41868168, 0.34614129, -2.0},
{ 0.88377046, 0.86863696, 0.84433435, 0.81132672,
0.77052259, 0.72358094, 0.66132536, 0.60669785,
0.54245932, 0.47487648, 0.40436600, 0.33136257,
0.25631627, 0.17968976, 0.10195545, 0.02359258, -2.0},
{ 0.70711856, 0.67881359, 0.63136740, 0.58142959,
0.53252513, 0.48864087, 0.43289406, 0.37543889,
0.31650210, 0.25631627, 0.19511892, 0.11756801,
0.03929228, -0.03922568, -0.11750182, -0.19505355, -2.0},
{ 0.40436600, 0.33136257, 0.24110239, 0.13315156,
0.00003333, -0.15639826, -0.30897896, -0.45395190,
-2.00000000, -2.00000000, -2.00000000, -2.00000000,
-2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
{ 0.15646409, 0.09413950, 0.03144340, -0.07842421,
-0.23340810, -0.36808613, -0.52246020, -0.64941130,
-2.00000000, -2.00000000, -2.00000000, -2.00000000,
-2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
{-0.17575978, -0.30897896, -0.40071028, -0.48858271,
-0.58774750, -0.67876465, -0.78528443, -0.87246873,
-2.00000000, -2.00000000, -2.00000000, -2.00000000,
-2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
{-0.56204534, -0.63738701, -0.70707143, -0.76037242,
-0.80898565, -0.85668907, -0.90143037, -0.93817086,
-2.00000000, -2.00000000, -2.00000000, -2.00000000,
-2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0},
{-0.80434405, -0.84006400, -0.87246873, -0.89800250,
-0.92082280, -0.94858126, -0.97415943, -0.99109125,
-2.00000000, -2.00000000, -2.00000000, -2.00000000,
-2.00000000, -2.00000000, -2.00000000, -2.00000000, -2.0}
};
static void pctolsp3(float *a, float *freq, int *sbits, int *findex)
{
int index;
int *f, *s;
float prev1, prev2;
float *r, *x3, *x4, temp, temp0, temp1, temp2;
float q[6], p[6];
q[1] = a[1] + a[10] - 1.0;
q[2] = a[2] + a[9] - q[1];
q[3] = a[3] + a[8] - q[2];
q[4] = a[4] + a[7] - q[3];
q[5] = a[5] + a[6] - q[4];
q[5] /= 2.0;
p[1] = a[1] - a[10] + 1.0;
p[2] = a[2] - a[9] + p[1];
p[3] = a[3] - a[8] + p[2];
p[4] = a[4] - a[7] + p[3];
p[5] = a[5] - a[6] + p[4];
p[5] /= 2.0;
prev1 = 9e9;
prev2 = 9e9;
x3 = (&l3table[0][0]);
x4 = (&l3lsp[0][0]);
r = (&freq[0]);
s = (&sbits[0]);
f = (&findex[0]);
index = 0;
for (;;)
{
for (;;)
{
/* evaluate sum polynomial (5 adds, 4 subs, 4 muls) */
temp = (x3[index]);
temp1 = 2.0*temp + q[1];
temp2 = 2.0*temp*temp1 - 1.0 + q[2];
temp0 = 2.0*temp*temp2 - temp1 + q[3];
temp1 = 2.0*temp*temp0 - temp2 + q[4];
temp2 = temp*temp1 - temp0 + q[5];
/* look for sign change */
if ((temp2*prev1) < 0.0 || index+1 == 1<<*s)
{
if (fabs(temp2) < fabs(prev1))
(*r++) = (x4[index]);
else
(*r++) = (x4[--index]);
if (prev1 < 0.0)
prev1 = 9e9;
else
prev1 = (-9e9);
*f++ = index;
if (r < (&freq[10]))
{
x3 += 17;
x4 += 16;
s++;
index = 0;
while (x4[index] < *(r-1)) index++;
break;
}
else
return;
}
prev1 = temp2;
index++;
}
for (;;)
{
/* evaluate sum polynomial (5 adds, 4 subs, 4 muls) */
temp = (x3[index]);
temp1 = 2.0*temp + p[1];
temp2 = 2.0*temp*temp1 - 1.0 + p[2];
temp0 = 2.0*temp*temp2 - temp1 + p[3];
temp1 = 2.0*temp*temp0 - temp2 + p[4];
temp2 = temp*temp1 - temp0 + p[5];
/* look for sign change */
if ((temp2*prev2) < 0.0 || index+1 == 1<<*s)
{
if (fabs(temp2) < fabs(prev2))
(*r++) = (x4[index]);
else
(*r++) = (x4[--index]);
if (prev2 < 0.0)
prev2 = 9e9;
else
prev2 = (-9e9);
*f++ = index;
if (r < (&freq[10]))
{
x3 += 17;
x4 += 16;
s++;
index = 0;
while (x4[index] < *(r-1)) index++;
break;
}
else
return;
}
prev2 = temp2;
index++;
}
}
}
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -