⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cgain.h

📁 g729 coding ipaddressing
💻 H
字号:
/*************************************************************************
*
* ROUTINE
*				cgain
*
* FUNCTION
*				Find codeword gain and error (TERNARY CODE BOOK ASSUMED!)
*
* SYNOPSIS
*				function cgain(ex, l, first, len, match)
*
*	formal
*
*						data	I/O
*		name			type	type	function
*		-------------------------------------------------------------------
*		ex[l]			float	i		excitation vector (ternary codeword)
*		l				int 	i		size of ex (dimension of codeword)
*		first			int 	i		first call flag
*		len 			int 	i		length to truncate impulse response
*		match			float	o		negative partial squared error
*		cgain			float	fun 	optimal gain for ex
*
*	external
*						data	I/O
*		name			type	type	function
*		-------------------------------------------------------------------
*		e0[]			float	i
*		h[];			float	i
*
**************************************************************************
*
* DESCRIPTION
*
*		Find the gain and error for each code word:
*		   a.  Filter code words through impulse response
*			   of perceptual weighting filter (LPC filter with
*			   bandwidth broadening).
*		   b.  Correlate filtered result with actual second error
*			   signal (e0).
*		   c.  Compute MSPE gain and error for code book vector.
*
*		Notes:	Code words may contain many zeros (i.e., ex(1)=0).	The
*				code book could be accessed by a pointer to nonzero samples.
*				Because the code book is static, it`s silly to test its
*				samples as in the code below.
*
*				Proper selection of the convolution length (len) depends on
*               the perceptual weighting filter's expansion factor (gamma)
*				which controls the damping of the inpulse response.
*
*               This is one of CELP's most computationally intensive
*				routines.  Neglecting overhead, the approximate number of 
*				DSP instructions (add, multiply, multiply accumulate, or
*				compare) per second (IPS) is:
*
*					   Code book size	MIPS
*					   --------------	----
*						 64 			 1.1
*						128 			 2.1
*						256 			 4.2
*						512 			 8.3
*
*				 C:  convolution (recursive truncated end-point correction)
*				 R:  correlation
*				 E:  energy (recursive end-point correction)
*				 G:  gain quantization
*
*
*       celp code book search complexity (doesn't fully exploit ternary values!):
*
*#define j	10
*
*		DSP chip instructions/operations:
*		int MUL=1;				!multiply
*		int ADD=1;				!add
*		int SUB=1;				!subtract
*		int MAC=1;				!multiply & accumulate
*		int MAD=2;				!multiply & add
*		int CMP=1;				!compare
*
*		CELP algorithm parameters:
*		int L=60;				!subframe length
*		int len=30; 			!length to truncate calculations (<= L)
*		int K=4;				!number of subframes/frame
*		int shift=2;			!shift between code words
*		int g_bits=5;			!cbgain bit allocation
*		float p=0.77;			!code book sparsity
*		float F=30.e-3; 		!time (seconds)/frame
*
*		int N[j] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512};
*
*		main()
*		{
*		  int i;
*		  float C, R, E, G, IPS;
*         printf("\n    N       C          R          E          G       MIPS\n");
*		  for (i = 0; i < j; i++)
*		  {
*			C = (335)*MAD + (N[i]-1)*shift*(1.0-p)*len*ADD;
*			R = N[i]*L*MAC;
*			E = L*MAC + (N[i]-1)*((1.0-p*p)*L*MAC + (p*p)*2*MAD);
*			G = N[i]*(g_bits*(CMP+MUL+ADD) + 3*MUL+1*SUB);
*			IPS = (C+R+E+G)*K/F;
*           printf("  %4d  %f   %f   %f   %f  %f\n", N[i], C*K/1.e6/F,
*					  R*K/1.e6/F,E*K/1.e6/F,G*K/1.e6/F,IPS/1.e6);
*		  }
*		}
*
*	  N 	  C 		 R			E		   G	   MIPS
*	  1  0.089333	0.008000   0.008000   0.002533	0.107867
*	  2  0.091173	0.016000   0.011573   0.005067	0.123813
*	  4  0.094853	0.032000   0.018719   0.010133	0.155706
*	  8  0.102213	0.064000   0.033011   0.020267	0.219491
*	 16  0.116933	0.128000   0.061595   0.040533	0.347062
*	 32  0.146373	0.256000   0.118763   0.081067	0.602203
*	 64  0.205253	0.512000   0.233100   0.162133	1.112486
*	128  0.323013	1.024000   0.461773   0.324267	2.133053
*	256  0.558533	2.048000   0.919118   0.648533	4.174185
*	512  1.029573	4.096000   1.833810   1.297067	8.256450
*
**************************************************************************
*
* CALLED BY
*
*		cbsearch
*
* CALLS
*
*		gainencode2
*
***************************************************************************
*
* REFERENCES
*
*		Tremain, Thomas E., Joseph P. Campbell, Jr and Vanoy C. Welch,
*       "A 4.8 kbps Code Excited Linear Predictive Coder," Proceedings
*		of the Mobile Satellite Conference, 3-5 May 1988, pp. 491-496.
*
*		Campbell, Joseph P. Jr., Vanoy C. Welch and Thomas E. Tremain,
*       "The New 4800 bps Voice Coding Standard," Military and 
*		Government Speech Tech, 1989, p. 64-70.
*
*       Lin, Daniel, "New Approaches to Stochastic Coding of Speech
*       Sources at Very Low Bit Rates," Signal Processing III:  Theories
*		and Applications (Proceedings of EUSIPCO-86), 1986, p.445.
*
*       Xydeas, C.S., M.A. Ireton and D.K. Baghbadrani, "Theory and
*		Real Time Implementation of a CELP Coder at 4.8 and 6.0 kbits/s
*       Using Ternary Code Excitation," Fifth International Conference on
*		Digital Processing of Signals in Communications, 1988, p. 167.
*
*       Ess, Mike, "Simple Convolution on the Cray X-MP,"
*		Supercomputer, March 1988, p. 35
*
*		Supercomputer, July 1988, p. 24
*
**************************************************************************/

static float cgain(const float ex[], int l, int first, int len, float *match)
{
#ifdef MSVC5OPT_BUG
#define float double
#endif
  float cor;
  float cgain;
#ifdef CELP_USE_CONTEXT
#define y		(ctx->CGAIN_y)
#define y59save	(ctx->CGAIN_y59save)
#define y60save	(ctx->CGAIN_y60save)
#define eng		(ctx->CGAIN_eng)
#else
  static float y[MAXL], y59save, y60save, eng;
#endif
  int i, j;

  int ex0_0 = round(ex[0]) == 0,
	  ex0_1 = round(ex[0]) == 1,
	  ex1_0 = round(ex[1]) == 0,
	  ex1_1 = round(ex[1]) == 1;

  if (first) {

	/**    For first code word, calculate and save convolution
		   of code word with truncated (to len) impulse response:

		   NOTES: A standard convolution of two L point sequences
				  produces 2L-1 points, however, this convolution
				  generates only the first L points.

                  A "scalar times vector accumulation" method is used
				  to exploit (skip) zero samples of the code words:

				  min(L-i, len-1)
		   y	   =  SUM  ex * h	, where i = 0, ..., L-1 points
			i+j, t	  j=0	 i	 j

						ex |0 1 .  .  . L-1|
		   h |x x len-1...1 0|				 = y[0]
			 h |x x len-1...1 0|			 = y[1]
							  : 				:
						 h |x x len-1...1 0| = y[L-1]
			  ----------------------------------------------------- 	*/

	for (i = 0; i < l; i++) {
	  y[i] = 0.0;
	}
	for (i = 0; i < l; i++) {
	  if ((ex[i] >= 0.5) || (ex[i] < -0.5))
		for( j = 0; j < l - i && j < len; j++) {
		  y[i + j] += ex[i] * h[j];
		}
	}
  } else {

	/** 	End correct the convolution sum on subsequent code words:
			(Do two end corrections for a shift by 2 code book)

		  y 	=  0
			0, 0
		   y	 =	y		 + ex * h	where i = 0, ..., L-1 points
			i, m	 i-1, m-1	-m	 i	and   m = 0, ..., cbsize-1 code words

           NOTE:  The data movements in the 2 loops with "y[i] = y[i - 1]"
				  are performed many times and can be quite time consuming.
				  Therefore, special precautions should be taken when
				  implementing this.  Some implementation suggestions:
				  1.  Circular buffers with pointers to eliminate data moves.
                  2.  Fast "block move" operation as offered on some DSPs.
			  ----------------------------------------------------- 	 */

	/* *First shift */

	if (!ex1_0) {
	  /* *ternary stochastic code book (-1, 0, +1)	*/
	  if (ex1_1) {
		for (i = len - 1; i > 0; i--) {
		  y[i - 1] += h[i];
		}
	  } else {
		for (i = len - 1; i > 0; i--) {
		  y[i - 1] -= h[i];
		}
	  }
	}
	for (i = l - 1; i > 0; i--) {
	  y[i] =  y[i - 1];
	}
	
	y[0] = ex[1] * h[0];

	/* *Second shift */

	if (!ex0_0) {
	/* *ternary stochastic code book (-1, 0, +1)  */
	  if (ex0_1) {
		for (i = len - 1; i > 0; i--) {
		  y[i - 1] += h[i];
		}
	  } else {
		for (i = len - 1; i > 0; i--) {
		  y[i - 1] -= h[i];
		}
	  }
	}
			  
	for (i = l - 1; i > 0; i--) {
	  y[i] = y[i - 1];
	}
	y[0] = ex[0] * h[0];
  }

  /**	Calculate correlation and energy:
		e0 = spectrum & pitch prediction residual
		y  = error weighting filtered code words

        \/\/\/  CELP's computations are focused in this correlation \/\/\/
				- For a 512 code book this correlation takes 4 MIPS!
				- Decimation?, Down-sample & decimate?, FEC codes?		*/

  cor = 0.0;
  for (i = 0; i < l; i++) {
	cor += y[i] * e0[i];
  }


  /* *End correct energy on subsequent code words: */
  if (ex0_0 && ex1_0 && !first) {
	eng = eng - y59save * y59save - y60save * y60save;
  } else {
	eng = 0.0;
	for (i = 0; i < l; i++) {
	  eng += y[i] * y[i];
	}
  }
  y59save = y[l - 2];
  y60save = y[l - 1];

  /* Compute gain and error:
		  NOTE: Actual MSPE = e0.e0 - cgain(2*cor-cgain*eng)
				since e0.e0 is independent of the code word,
				minimizing MSPE is equivalent to maximizing:
					 *match = cgain(2*cor-cgain*eng)
				If unquantized cgain is used, this simplifies:
					 *match = cor*cgain 								 */

  /*	Independent (open-loop) quantization of gain and match (index):  */

  if (eng <= 0.0) {
	eng = 1.0;
  }
  cgain = cor / eng;
#ifdef MSVC5OPT_BUG
#undef float
#endif

  *match = (float) (cor * cgain);

  /* *Joint (closed-loop) quantization of gain and match (index):		 */
  /* *(Beware that the match score can be negative!)					 */

  /*  cgain = gainencode2(cor, eng, &i);								 */
  /*  *match = cgain * (2.0 * cor - cgain * eng);						 */

  return  (float) cgain;
}
#ifdef CELP_USE_CONTEXT
#undef y
#undef y59save
#undef y60save
#undef eng
#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -