⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 singulr.dem

📁 智能画图软件
💻 DEM
字号:
# $Id: singulr.dem,v 1.6 2003/10/28 05:35:54 sfeam Exp $## Demo that plots some surfaces with singularities.# Author: Carsten Steger## (x,y,x^2-y^2,2xy) is the graph of w=z^2 in 4-space.# Therefore (x^2-y^2,2xy,x,y) is the graph of w=sqrt(z) in 4-space.# Coordinates 1, 2, and 3 give the real part of either function,# whereas coordinates 1, 2, and 4 give the imaginary part.# The same holds for the cube function w=z^3. The graphs are given by# (x,y,x^3-3xy^2,3x^2y-y^3) and (x^3-3xy^2,3x^2y-y^3,x,y).# And so on...set parametricset hidden3dset isosamples 21set autoscaleset view 60,30set urange [-3:3]set vrange [-3:3]set title "Real part of complex square root function"splot u**2-v**2,2*u*v,upause -1 "Hit return to continue (1)"set view 60,210set title "Real part of complex square root function (different view)"replotpause -1 "Hit return to continue (2)"set view 60,120set urange [-3:3]set vrange [-3:3]set title "Imaginary part of complex square root function"splot u**2-v**2,2*u*v,vpause -1 "Hit return to continue (3)"set view 60,300set title "Imaginary part of complex square root function (different view)"replotpause -1 "Hit return to continue (4)"set view 60,30set urange [-3:3]set vrange [-3:3]set title "Real part of complex cube root function"splot u**3-3*u*v**2,3*u**2*v-v**3,upause -1 "Hit return to continue (5)"set view 60,210set title "Real part of complex cube root function (different view)"replotpause -1 "Hit return to continue (6)"set view 60,30set urange [-3:3]set vrange [-3:3]set title "Imaginary part of complex cube root function"splot u**3-3*u*v**2,3*u**2*v-v**3,vpause -1 "Hit return to continue (7)"set view 60,210set title "Imaginary part of complex cube root function (different view)"replotpause -1 "Hit return to continue (8)" set view 60,30set isosamples 31set urange [-1:1]set vrange [-1:1]set title "Real part of complex 4th root function"splot u**4-6*u**2*v**2+v**4,4*u**3*v-4*u*v**3,upause -1 "Hit return to continue (9)"set view 60,210set title "Real part of complex 4th root function (different view)"replotpause -1 "Hit return to continue (10)"set view 60,120set urange [-1:1]set vrange [-1:1]set title "Imaginary part of complex 4th root function"splot u**4-6*u**2*v**2+v**4,4*u**3*v-4*u*v**3,vpause -1 "Hit return to continue (11)"set view 60,300set title "Imaginary part of complex 4th root function (different view)"replotpause -1 "Hit return to continue (12)"set isosamples 21set view 60,20set urange [-3:3]set vrange [-3:3]set title "Enneper's surface"splot u-u**3/3+u*v**2,v-v**3/3+v*u**2,u**2-v**2pause -1 "Hit return to continue (13)"set view 60,110set title "Enneper's surface (different view)"replotpause -1 "Hit return to continue (14)"set isosamples 31,11set view 60,30set title "Moebius strip"set urange [0:2*pi]set vrange [-0.25:0.25]splot (2-v*sin(u/2))*sin(u),(2-v*sin(u/2))*cos(u),v*cos(u/2)pause -1 "Hit return to continue (15)"set view 60,210set title "Moebius strip (view from opposite side)"replotpause -1 "Hit return to continue (16)"unset keyset xrange [-10:10]set yrange [-10:10]set zrange [-3:3]set urange [0:2*pi]set vrange [0:2*pi]set isosamples 39,60set view 60,120set title "Klein bottle"splot  (2*sin(u)*cos(v/2)-sin(2*u)*sin(v/2)+8)*cos(v), \       (2*sin(u)*cos(v/2)-sin(2*u)*sin(v/2)+8)*sin(v), \        2*sin(u)*sin(v/2)+sin(2*u)*cos(v/2)pause -1 "Hit return to continue (17)"set urange [0:2*pi]set vrange [0:4*pi/3]set isosamples 39,40set view 60,20set title "Klein bottle with look at the 'inside'"replotpause -1 "Hit return to continue (18)"set style data linesset xrange [-12:12]set yrange [-12:12]set zrange [*:*]unset hidden3dset ticslevel 0.set view 50,15	#HBB: ,1,1.7set title "Klein bottle, glassblowers' version (look-through)"splot "klein.dat"pause -1 "Hit return to continue (19)"set hidden3dset view 70,305set title "Klein bottle, glassblowers' version (solid)"splot "klein.dat"pause -1 "Hit return to continue (20)"reset

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -