📄 pca1.m
字号:
% PCA1: Perform PCA using covariance.
% data --- MxN matrix of input data (M dimensions, N trials)
% signals --- MxN matrix of projected data
% PC --- each column is a PC
% V --- Mx1 matrix of variances
%
function [signals, PC, V] = pca1( data )
[M, N] = size( data );
% subtract off the mean for each dimension
mn = mean( data, 2 );
data = data - repmat( mn, 1, N );
% calculate the covariance matrix
covariance = 1/ (N-1) * data * data';
% find the eigenvectors and eigenvalues
[PC, V] = eig( covariance );
% extract diagonal of matrix as vector
V = diag(V);
% sort the variances in decreasing order
[junk, rindices] = sort(-1*V);
V = V(rindices);
PC = PC(:,rindices);
% project the original data set
signals = PC' * data;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -