📄 pca2.m
字号:
% PCA2: Perform PCA using SVD.
% data --- MxN matrix of input data ( M dimensions, N trials )
% signals --- MxN matrix of projected data
% PC --- each column is a PC
% V --- Mx1 matrix of variances
%
function [signals, PC, V] = pca2( data )
[M, N] = size( data );
% subtract off the mean for each dimension
mn = mean( data, 2 );
data = data - repmat( mn, 1, N );
% construct the matrix Y
Y = data' / sqrt(N-1);
% SVD does it all
[u, S, PC] = svd( Y );
% calculate the variances
S = diag( S );
V = S .* S;
% project the original data
signals = PC' * data;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -