📄 sarp_g.m
字号:
if (ru < p)
rho = rho2;
acc = acc + 1;
end;
acc_rate(iter,1) = acc/iter;
% update cc based on std of rho draws
if acc_rate(iter,1) < 0.4
cc = cc/1.1;
end;
if acc_rate(iter,1) > 0.6
cc = cc*1.1;
end;
end; % end of if metflag == 1
if metflag == 0
% when metflag == 0,
% we use numerical integration to perform rho-draw
b0 = (x'*x)\(x'*y);
bd = (x'*x)\(x'*Wy);
e0 = y - x*b0;
ed = Wy - x*bd;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
rho = draw_rho(detval,epe0,eped,epe0d,n,k,rho,a1,a2);
end;
if iter > nomit % if we are past burn-in, save the draws
bsave(iter-nomit,1:k) = bhat';
psave(iter-nomit,1) = rho;
ssave(iter-nomit,1) = sige;
ymean = ymean + y;
end;
iter = iter + 1;
waitbar(iter/ndraw);
end; % end of sampling loop
close(hwait);
rval = 0;
rho = mean(psave);
bmean = mean(bsave);
beta = bmean';
yhat = (speye(n) - rho*W)\(x*beta);
yprob = stdn_cdf(yhat);
ymean = ymean /(ndraw-nomit);
results.vmean = ones(n,1);
% we compute log-marginal posterior density for homoscedastic model
Wy = sparse(W)*ymean;
AI = x'*x;
b0 = AI\(x'*ymean);
bd = AI\(x'*Wy);
e0 = y - x*b0;
ed = Wy - x*bd;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
[nobs,nvar] = size(x);
logdetx = log(det(x'*x));
mlike = sar_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,logdetx,a1,a2);
% compute psuedo R-squared
e = ymean-yhat;
sigu = (e'*e);
sige = sigu/(nobs-nvar);
ym = ymean - mean(ymean);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % psuedo r-squared
otherwise
error('sarp_g: unrecognized novi_flag value on input');
% we should never get here
end; % end of homoscedastic vs. heteroscedastic options
time3 = etime(clock,t0);
time = etime(clock,timet);
results.meth = 'sarp_g';
results.bdraw = bsave;
results.pdraw = psave;
results.yhat = yhat;
results.yprob = yprob;
results.ymean = ymean;
results.sdraw = ssave;
results.acc = acc_rate;
results.bmean = c;
results.bstd = sqrt(diag(T));
results.nobs = n;
results.nvar = k;
results.ndraw = ndraw;
results.nomit = nomit;
results.time = time;
results.time1 = time1;
results.time2 = time2;
results.time3 = time3;
results.tflag = 'plevel';
results.dflag = metflag;
results.order = order;
results.rmax = rmax;
results.rmin = rmin;
results.lflag = ldetflag;
results.lndet = detval;
results.priorb = prior_beta;
results.zip = nzip;
results.mlike = mlike;
results.rsqr = rsqr;
if mm~= 0
results.rdraw = rsave;
results.m = mm;
results.k = kk;
else
results.r = rval;
results.rdraw = 0;
end;
function rho = draw_rho(detval,epe0,eped,epe0d,n,k,rho,a1,a2,logdetx)
% update rho via univariate numerical integration
nmk = (n-k)/2;
nrho = length(detval(:,1));
iota = ones(nrho,1);
z = epe0*iota - 2*detval(:,1)*epe0d + detval(:,1).*detval(:,1)*eped;
if nargin == 10
den = -0.5*logdetx*iota + detval(:,2) - nmk*log(z);
else
den = detval(:,2) - nmk*log(z);
end;
bprior = beta_prior(detval(:,1),a1,a2);
den = den + log(bprior);
n = length(den);
y = detval(:,1);
adj = max(den);
den = den - adj;
x = exp(den);
% trapezoid rule
isum = sum((y(2:n,1) + y(1:n-1,1)).*(x(2:n,1) - x(1:n-1,1))/2);
z = abs(x/isum);
den = cumsum(z);
rnd = unif_rnd(1,0,1)*sum(z);
ind = find(den <= rnd);
idraw = max(ind);
if (idraw > 0 & idraw < nrho)
rho = detval(idraw,1);
end;
function cout = c_sar(rho,y,xb,sige,W,detval,c,T);
% PURPOSE: evaluate the conditional distribution of rho given sige
% spatial autoregressive model using sparse matrix algorithms
% ---------------------------------------------------
% USAGE:cout = c_sar(rho,y,x,b,sige,W,detval,p,R)
% where: rho = spatial autoregressive parameter
% y = dependent variable vector
% W = spatial weight matrix
% detval = an (ngrid,2) matrix of values for det(I-rho*W)
% over a grid of rho values
% detval(:,1) = determinant values
% detval(:,2) = associated rho values
% sige = sige value
% p = (optional) prior mean for rho
% R = (optional) prior variance for rho
% ---------------------------------------------------
% RETURNS: a conditional used in Metropolis-Hastings sampling
% NOTE: called only by sar_g
% --------------------------------------------------
% SEE ALSO: sar_g, c_far, c_sac, c_sem
% ---------------------------------------------------
gsize = detval(2,1) - detval(1,1);
% Note these are actually log detvalues
i1 = find(detval(:,1) <= rho + gsize);
i2 = find(detval(:,1) <= rho - gsize);
i1 = max(i1);
i2 = max(i2);
index = round((i1+i2)/2);
if isempty(index)
index = 1;
end;
detm = detval(index,2);
if nargin == 6 % case of diffuse prior
n = length(y);
z = speye(n) - rho*sparse(W);
e = z*y - xb;
epe = (e'*e)/(2*sige);
elseif nargin == 8 % case of informative prior
T = T*sige;
z = (speye(n) - rho*W)*e;
epe = ((z'*z)/2*sige) + 0.5*(((rho-c)^2)/T);
else
error('c_sar: Wrong # of inputs arguments');
end;
cout = detm - epe;
function [nu,d0,rval,mm,kk,rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,c,T,prior_beta,cc,metflag,novi_flag,a1,a2] = sar_parse(prior,k)
% PURPOSE: parses input arguments for far, far_g models
% ---------------------------------------------------
% USAGE: [rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,c,T,prior_beta,cc,metflag] =
% sar_parse(prior,k)
% where info contains the structure variable with inputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% set defaults
novi_flag = 0; % do vi-estimates
eflag = 1; % default to not computing eigenvalues
ldetflag = 1; % default to 1999 Pace and Barry MC determinant approx
order = 50; % there are parameters used by the MC det approx
iter = 30; % defaults based on Pace and Barry recommendation
rmin = -1; % use -1,1 rho interval as default
rmax = 1;
detval = 0; % just a flag
rho = 0.5;
sige = 1.0;
c = zeros(k,1); % diffuse prior for beta
T = eye(k)*1e+12;
prior_beta = 0; % flag for diffuse prior on beta
cc=0.1;
metflag = 0;
nu = 0;
d0 = 0;
mm = 0;
kk = 0;
rval = 4;
a1 = 1.0;
a2 = 1.0;
fields = fieldnames(prior);
nf = length(fields);
if nf > 0
for i=1:nf
if strcmp(fields{i},'beta')
c = prior.beta;
prior_beta = 1; % flag for informative prior on beta
elseif strcmp(fields{i},'bcov')
T = prior.bcov;
prior_beta = 1; % flag for informative prior on beta
elseif strcmp(fields{i},'nu')
nu = prior.nu;
elseif strcmp(fields{i},'d0')
d0 = prior.d0;
elseif strcmp(fields{i},'a1')
a1 = prior.a1;
elseif strcmp(fields{i},'a2')
a2 = prior.a2;
elseif strcmp(fields{i},'m')
mm = prior.m;
kk = prior.k;
rval = gamm_rnd(1,1,mm,kk); % initial value for rval
elseif strcmp(fields{i},'rmin')
rmin = prior.rmin; eflag = 1;
elseif strcmp(fields{i},'rmax')
rmax = prior.rmax; eflag = 1;
elseif strcmp(fields{i},'lndet')
detval = prior.lndet;
ldetflag = -1;
eflag = 1;
rmin = detval(1,1);
nr = length(detval);
rmax = detval(nr,1);
elseif strcmp(fields{i},'novi')
novi_flag = prior.novi;
elseif strcmp(fields{i},'lflag')
tst = prior.lflag;
if tst == 0,
ldetflag = 0;
elseif tst == 1,
ldetflag = 1;
elseif tst == 2,
ldetflag = 2;
else
error('sarp_g: unrecognizable lflag value on input');
end;
elseif strcmp(fields{i},'order')
order = prior.order;
elseif strcmp(fields{i},'iter')
iter = prior.iter;
elseif strcmp(fields{i},'dflag')
metflag = prior.dflag;
elseif strcmp(fields{i},'eig')
eflag = prior.eig;
end;
end;
else, % the user has input a blank info structure
% so we use the defaults
end;
function [rmin,rmax,time2] = sar_eigs(eflag,W,rmin,rmax,n);
% PURPOSE: compute the eigenvalues for the weight matrix
% ---------------------------------------------------
% USAGE: [rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,W)
% where eflag is an input flag, W is the weight matrix
% rmin,rmax may be used as default outputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
if eflag == 0
t0 = clock;
opt.tol = 1e-3; opt.disp = 0;
lambda = eigs(sparse(W),speye(n),1,'SR',opt);
rmin = 1/lambda;
rmax = 1;
time2 = etime(clock,t0);
else
time2 = 0;
end;
function [detval,time1] = sar_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% PURPOSE: compute the log determinant |I_n - rho*W|
% using the user-selected (or default) method
% ---------------------------------------------------
% USAGE: detval = far_lndet(lflag,W,rmin,rmax)
% where eflag,rmin,rmax,W contains input flags
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% do lndet approximation calculations if needed
if ldetflag == 0 % no approximation
t0 = clock;
out = lndetfull(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 1 % use Pace and Barry, 1999 MC approximation
t0 = clock;
out = lndetmc(order,iter,W,rmin,rmax);
time1 = etime(clock,t0);
results.limit = [out.rho out.lo95 out.lndet out.up95];
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 2 % use Pace and Barry, 1998 spline interpolation
t0 = clock;
out = lndetint(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == -1 % the user fed down a detval matrix
time1 = 0;
% check to see if this is right
if detval == 0
error('sarp_g: wrong lndet input argument');
end;
[n1,n2] = size(detval);
if n2 ~= 2
error('sarp_g: wrong sized lndet input argument');
elseif n1 == 1
error('sarp_g: wrong sized lndet input argument');
end;
end;
function out = sar_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,logdetx,a1,a2)
% PURPOSE: returns a vector of the log-marginal over a grid of rho-values
% -------------------------------------------------------------------------
% USAGE: out = sar_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,logdetx,a1,a2)
% where: detval = an ngrid x 2 matrix with rho-values and lndet values
% e0 = y - x*b0;
% ed = Wy - x*bd;
% epe0 = e0'*e0;
% eped = ed'*ed;
% epe0d = ed'*e0;
% nobs = # of observations
% nvar = # of explanatory variables
% logdetx = log(det(x'*x))
% a1 = parameter for beta prior on rho
% a2 = parameter for beta prior on rho
% -------------------------------------------------------------------------
% RETURNS: out = a structure variable
% out = log marginal, a vector the length of detval
% -------------------------------------------------------------------------
% written by:
% James P. LeSage, 7/2003
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
n = length(detval);
nmk = (nobs-nvar);
C = nvar*gammaln(0.5) + gammaln((nmk)/2) - gammaln(nobs/2);
% C is a constant of integration that can vary with nvars, so for model
% comparisions involving different nvars we need to include this
iota = ones(n,1);
z = epe0*iota - 2*detval(:,1)*epe0d + detval(:,1).*detval(:,1)*eped;
den = -0.5*logdetx*iota + detval(:,2) - (nmk/2)*log(z);
den = real(den);
bprior = beta_prior(detval(:,1),a1,a2);
den = den + log(bprior);
out = C*iota + den;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -