⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sarp_g.m

📁 计量工具箱
💻 M
📖 第 1 页 / 共 2 页
字号:
              if (ru < p)
              rho = rho2;
              acc = acc + 1;
              end;
          acc_rate(iter,1) = acc/iter;
      % update cc based on std of rho draws
       if acc_rate(iter,1) < 0.4
       cc = cc/1.1;
       end;
       if acc_rate(iter,1) > 0.6
       cc = cc*1.1;
       end;
      end; % end of if metflag == 1

      if metflag == 0
      % when metflag == 0,
      % we use numerical integration to perform rho-draw
          b0 = (x'*x)\(x'*y);
          bd = (x'*x)\(x'*Wy);
          e0 = y - x*b0;
          ed = Wy - x*bd;
          epe0 = e0'*e0;
          eped = ed'*ed;
          epe0d = ed'*e0;
          rho = draw_rho(detval,epe0,eped,epe0d,n,k,rho,a1,a2);
      end;

          
           
               
    if iter > nomit % if we are past burn-in, save the draws
    bsave(iter-nomit,1:k) = bhat';
    psave(iter-nomit,1) = rho;
    ssave(iter-nomit,1) = sige;
    ymean = ymean + y;
    end;
    
iter = iter + 1; 
waitbar(iter/ndraw);         
end; % end of sampling loop
close(hwait);

rval = 0;
rho = mean(psave);
bmean = mean(bsave);
beta = bmean';
yhat = (speye(n) - rho*W)\(x*beta);
yprob = stdn_cdf(yhat);
ymean = ymean /(ndraw-nomit);
results.vmean = ones(n,1);

% we compute log-marginal posterior density for homoscedastic model   

          Wy = sparse(W)*ymean;
          AI = x'*x;
          b0 = AI\(x'*ymean);
          bd = AI\(x'*Wy);
          e0 = y - x*b0;
          ed = Wy - x*bd;
          epe0 = e0'*e0;
          eped = ed'*ed;
          epe0d = ed'*e0;
[nobs,nvar] = size(x);    
logdetx = log(det(x'*x));
mlike = sar_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,logdetx,a1,a2);

% compute psuedo R-squared
e = ymean-yhat;
sigu = (e'*e);
sige = sigu/(nobs-nvar);
ym = ymean - mean(ymean);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % psuedo r-squared


otherwise
error('sarp_g: unrecognized novi_flag value on input');
% we should never get here

end; % end of homoscedastic vs. heteroscedastic options

time3 = etime(clock,t0);

time = etime(clock,timet);

results.meth  = 'sarp_g';
results.bdraw = bsave;
results.pdraw = psave;
results.yhat  = yhat;
results.yprob = yprob;
results.ymean = ymean;
results.sdraw = ssave;
results.acc = acc_rate;
results.bmean = c;
results.bstd  = sqrt(diag(T));
results.nobs  = n;
results.nvar  = k;
results.ndraw = ndraw;
results.nomit = nomit;
results.time  = time;
results.time1 = time1;
results.time2 = time2;
results.time3 = time3;
results.tflag = 'plevel';
results.dflag = metflag;
results.order = order;
results.rmax = rmax; 
results.rmin = rmin;
results.lflag = ldetflag;
results.lndet = detval;
results.priorb = prior_beta;
results.zip = nzip;  
results.mlike = mlike;
results.rsqr = rsqr;
if mm~= 0
results.rdraw = rsave;
results.m     = mm;
results.k     = kk;
else
results.r     = rval;
results.rdraw = 0;
end;



function rho = draw_rho(detval,epe0,eped,epe0d,n,k,rho,a1,a2,logdetx)
% update rho via univariate numerical integration

nmk = (n-k)/2;
nrho = length(detval(:,1));
iota = ones(nrho,1);

z = epe0*iota - 2*detval(:,1)*epe0d + detval(:,1).*detval(:,1)*eped;
if nargin == 10
den = -0.5*logdetx*iota + detval(:,2) - nmk*log(z);
else
den = detval(:,2) - nmk*log(z);
end;

bprior = beta_prior(detval(:,1),a1,a2);
den = den + log(bprior);
n = length(den);
y = detval(:,1);
adj = max(den);
den = den - adj;
x = exp(den);

% trapezoid rule
isum = sum((y(2:n,1) + y(1:n-1,1)).*(x(2:n,1) - x(1:n-1,1))/2);
z = abs(x/isum);
den = cumsum(z);

rnd = unif_rnd(1,0,1)*sum(z);
ind = find(den <= rnd);
idraw = max(ind);
if (idraw > 0 & idraw < nrho)
rho = detval(idraw,1);
end;


function cout = c_sar(rho,y,xb,sige,W,detval,c,T);
% PURPOSE: evaluate the conditional distribution of rho given sige
%  spatial autoregressive model using sparse matrix algorithms
% ---------------------------------------------------
%  USAGE:cout = c_sar(rho,y,x,b,sige,W,detval,p,R)
%  where:  rho  = spatial autoregressive parameter
%          y    = dependent variable vector
%          W    = spatial weight matrix
%        detval = an (ngrid,2) matrix of values for det(I-rho*W) 
%                 over a grid of rho values 
%                 detval(:,1) = determinant values
%                 detval(:,2) = associated rho values
%          sige = sige value
%          p    = (optional) prior mean for rho
%          R    = (optional) prior variance for rho
% ---------------------------------------------------
%  RETURNS: a conditional used in Metropolis-Hastings sampling
%  NOTE: called only by sar_g
%  --------------------------------------------------
%  SEE ALSO: sar_g, c_far, c_sac, c_sem
% ---------------------------------------------------

gsize = detval(2,1) - detval(1,1);
% Note these are actually log detvalues
i1 = find(detval(:,1) <= rho + gsize);
i2 = find(detval(:,1) <= rho - gsize);
i1 = max(i1);
i2 = max(i2);
index = round((i1+i2)/2);
if isempty(index)
index = 1;
end;
detm = detval(index,2); 

if nargin == 6      % case of diffuse prior
n = length(y);
z = speye(n) - rho*sparse(W);
e = z*y - xb; 
epe = (e'*e)/(2*sige);

elseif nargin == 8  % case of informative prior
T = T*sige;
z = (speye(n) - rho*W)*e;
epe = ((z'*z)/2*sige) + 0.5*(((rho-c)^2)/T);

else
error('c_sar: Wrong # of inputs arguments');

end;

cout =   detm - epe;



function [nu,d0,rval,mm,kk,rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,c,T,prior_beta,cc,metflag,novi_flag,a1,a2] = sar_parse(prior,k)
% PURPOSE: parses input arguments for far, far_g models
% ---------------------------------------------------
%  USAGE: [rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,c,T,prior_beta,cc,metflag] = 
%                           sar_parse(prior,k)
% where info contains the structure variable with inputs 
% and the outputs are either user-inputs or default values
% ---------------------------------------------------

% set defaults

novi_flag = 0; % do vi-estimates
eflag = 1;     % default to not computing eigenvalues
ldetflag = 1;  % default to 1999 Pace and Barry MC determinant approx
order = 50;    % there are parameters used by the MC det approx
iter = 30;     % defaults based on Pace and Barry recommendation
rmin = -1;     % use -1,1 rho interval as default
rmax = 1;
detval = 0;    % just a flag
rho = 0.5;
sige = 1.0;
c = zeros(k,1);   % diffuse prior for beta
T = eye(k)*1e+12;
prior_beta = 0;   % flag for diffuse prior on beta
cc=0.1;
metflag = 0;
nu = 0;
d0 = 0;
mm = 0;
kk = 0;
rval = 4;
a1 = 1.0;
a2 = 1.0;

fields = fieldnames(prior);
nf = length(fields);
if nf > 0
 for i=1:nf
    if strcmp(fields{i},'beta')
        c = prior.beta;
        prior_beta = 1; % flag for informative prior on beta
    elseif strcmp(fields{i},'bcov')
        T = prior.bcov;
        prior_beta = 1; % flag for informative prior on beta
    elseif strcmp(fields{i},'nu')
        nu = prior.nu;
    elseif strcmp(fields{i},'d0')
        d0 = prior.d0;  
    elseif strcmp(fields{i},'a1')
       a1 = prior.a1; 
    elseif strcmp(fields{i},'a2')
       a2 = prior.a2; 
    elseif strcmp(fields{i},'m')
        mm = prior.m;
        kk = prior.k;
        rval = gamm_rnd(1,1,mm,kk);    % initial value for rval   
    elseif strcmp(fields{i},'rmin')
        rmin = prior.rmin;  eflag = 1;
    elseif strcmp(fields{i},'rmax')
        rmax = prior.rmax;  eflag = 1;
    elseif strcmp(fields{i},'lndet')
    detval = prior.lndet;
    ldetflag = -1;
    eflag = 1;
    rmin = detval(1,1);
    nr = length(detval);
    rmax = detval(nr,1);
    elseif strcmp(fields{i},'novi')
        novi_flag = prior.novi;
    elseif strcmp(fields{i},'lflag')
        tst = prior.lflag;
        if tst == 0,
        ldetflag = 0;
        elseif tst == 1,
        ldetflag = 1; 
        elseif tst == 2,
        ldetflag = 2;
        else
        error('sarp_g: unrecognizable lflag value on input');
        end;
    elseif strcmp(fields{i},'order')
        order = prior.order;  
    elseif strcmp(fields{i},'iter')
        iter = prior.iter; 
    elseif strcmp(fields{i},'dflag')
        metflag = prior.dflag;
    elseif strcmp(fields{i},'eig')
        eflag = prior.eig;

    end;
 end;
 
else, % the user has input a blank info structure
      % so we use the defaults
end; 

function [rmin,rmax,time2] = sar_eigs(eflag,W,rmin,rmax,n);
% PURPOSE: compute the eigenvalues for the weight matrix
% ---------------------------------------------------
%  USAGE: [rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,W)
% where eflag is an input flag, W is the weight matrix
%       rmin,rmax may be used as default outputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------


if eflag == 0
t0 = clock;
opt.tol = 1e-3; opt.disp = 0;
lambda = eigs(sparse(W),speye(n),1,'SR',opt);  
rmin = 1/lambda;   
rmax = 1;
time2 = etime(clock,t0);
else
time2 = 0;
end;


function [detval,time1] = sar_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% PURPOSE: compute the log determinant |I_n - rho*W|
% using the user-selected (or default) method
% ---------------------------------------------------
%  USAGE: detval = far_lndet(lflag,W,rmin,rmax)
% where eflag,rmin,rmax,W contains input flags 
% and the outputs are either user-inputs or default values
% ---------------------------------------------------


% do lndet approximation calculations if needed
if ldetflag == 0 % no approximation
t0 = clock;    
out = lndetfull(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
    
elseif ldetflag == 1 % use Pace and Barry, 1999 MC approximation

t0 = clock;    
out = lndetmc(order,iter,W,rmin,rmax);
time1 = etime(clock,t0);
results.limit = [out.rho out.lo95 out.lndet out.up95];
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];

elseif ldetflag == 2 % use Pace and Barry, 1998 spline interpolation

t0 = clock;
out = lndetint(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];

elseif ldetflag == -1 % the user fed down a detval matrix
    time1 = 0;
        % check to see if this is right
        if detval == 0
            error('sarp_g: wrong lndet input argument');
        end;
        [n1,n2] = size(detval);
        if n2 ~= 2
            error('sarp_g: wrong sized lndet input argument');
        elseif n1 == 1
            error('sarp_g: wrong sized lndet input argument');
        end;          
end;

function  out = sar_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,logdetx,a1,a2)
% PURPOSE: returns a vector of the log-marginal over a grid of rho-values
% -------------------------------------------------------------------------
% USAGE: out = sar_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,logdetx,a1,a2)
% where:       detval = an ngrid x 2 matrix with rho-values and lndet values
%                  e0 = y - x*b0;
%                 ed = Wy - x*bd;
%               epe0 = e0'*e0;
%               eped = ed'*ed;
%              epe0d = ed'*e0;
%               nobs = # of observations
%               nvar = # of explanatory variables
%            logdetx = log(det(x'*x))
%                 a1 = parameter for beta prior on rho
%                 a2 = parameter for beta prior on rho
% -------------------------------------------------------------------------
% RETURNS: out = a structure variable
%        out = log marginal, a vector the length of detval
% -------------------------------------------------------------------------

% written by:
% James P. LeSage, 7/2003
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com

n = length(detval);
nmk = (nobs-nvar);
C =  nvar*gammaln(0.5) + gammaln((nmk)/2) - gammaln(nobs/2);
% C is a constant of integration that can vary with nvars, so for model
% comparisions involving different nvars we need to include this
iota = ones(n,1);
z = epe0*iota - 2*detval(:,1)*epe0d + detval(:,1).*detval(:,1)*eped;
den = -0.5*logdetx*iota + detval(:,2) - (nmk/2)*log(z);
den = real(den);
bprior = beta_prior(detval(:,1),a1,a2);
den = den + log(bprior);
out = C*iota + den;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -