📄 sar_gv.m
字号:
function results = sar_gv(y,x,W,ndraw,nomit,prior)
% PURPOSE: Bayesian estimates of the spatial autoregressive model
% THIS FUNCTION: estimates the heteroscedasticity parameter r
% and returns results in results.rdraw for posterior inference
% y = rho*W*y + XB + e, e = N(0,sige*V), V = diag(v1,v2,...vn)
% r/vi = ID chi(r)/r
% r = Gamma(delta,2)
% B = N(c,T),
% 1/sige = Gamma(nu,d0),
% rho = Uniform(rmin,rmax)
%-------------------------------------------------------------
% USAGE: results = sar_gv(y,x,W,ndraw,nomit,prior)
% where: y = dependent variable vector (nobs x 1)
% x = independent variables matrix (nobs x nvar)
% W = 1st order contiguity matrix (standardized, row-sums = 1)
% ndraw = # of draws
% nomit = # of initial draws omitted for burn-in
% prior = a structure variable with:
% prior.beta = prior means for beta, c above (default 0)
% priov.bcov = prior beta covariance , T above (default 1e+12)
% prior.nu = informative Gamma(nu,d0) prior on sige
% prior.d0 = default: nu=0,d0=0 (diffuse prior)
% prior.delta = default: delta = 20
% prior.rmin = (optional) min rho used in sampling (default = -1)
% prior.rmax = (optional) max rho used in sampling (default = 1)
% prior.lflag = 0 for full lndet computation (default = 1, fastest)
% = 1 for MC approx (fast for large problems)
% = 2 for Spline approx (medium speed)
% prior.order = order to use with prior.lflag = 1 option (default = 50)
% prior.iter = iters to use with prior.lflag = 1 option (default = 30)
% prior.dflag = 0 for numerical integration, 1 for Metropolis-Hastings
% (default = 1 for nobs <= 1,000, =0 for nobs > 1,000)
% prior.lndet = a matrix returned by sar, sar_g, sarp_g, etc.
% containing log-determinant information to save time
%-------------------------------------------------------------
% RETURNS: a structure:
% results.meth = 'sar_gv'
% results.rdraw = r draws (ndraw-nomit x 1)
% results.delta = value of delta (from input)
% results.bdraw = bhat draws (ndraw-nomit x nvar)
% results.pdraw = rho draws (ndraw-nomit x 1)
% results.sdraw = sige draws (ndraw-nomit x 1)
% results.vmean = mean of vi draws (nobs x 1)
% results.bmean = b prior means, prior.beta from input
% results.bstd = b prior std deviations sqrt(diag(prior.bcov))
% results.mlike = marginal likelihood
% results.novi = 1 for prior.novi = 1, 0 for prior.delta input
% results.nobs = # of observations
% results.nvar = # of variables in x-matrix
% results.ndraw = # of draws
% results.nomit = # of initial draws omitted
% results.y = y-vector from input (nobs x 1)
% results.yhat = mean of posterior predicted (nobs x 1)
% results.nu = nu prior parameter
% results.d0 = d0 prior parameter
% results.time1 = time for eigenvalue calculation
% results.time2 = time for log determinant calcluation
% results.time3 = time for sampling
% results.time = total time taken
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.tflag = 'plevel' (default) for printing p-levels
% = 'tstat' for printing bogus t-statistics
% results.lflag = lflag from input
% results.iter = prior.iter option from input
% results.order = prior.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95]
% intervals for the case of lflag = 1
% results.dflag = dflag value from input (or default value used)
% results.lndet = a matrix containing log-determinant information
% (for use in later function calls to save time)
% results.acc = acceptance rate for dof M-H sampling
% --------------------------------------------------------------
% NOTES: purpose of this function is to provide an inference
% on the hyperparameter r in the heteroscedastic Bayesian sar model
% Use the results.rdraw to draw this inference
% --------------------------------------------------------------
% SEE ALSO: (sar_gvd demo)
% --------------------------------------------------------------
% REFERENCES: James P. LeSage, `Bayesian Estimation of Spatial Autoregressive
% Models', International Regional Science Review, 1997
% Volume 20, number 1\&2, pp. 113-129.
% For lndet information see: Ronald Barry and R. Kelley Pace,
% "A Monte Carlo Estimator of the Log Determinant of Large Sparse Matrices",
% Linear Algebra and its Applications", Volume 289, Number 1-3, 1999, pp. 41-54.
% and: R. Kelley Pace and Ronald P. Barry
% "Simulating Mixed Regressive Spatially autoregressive Estimators",
% Computational Statistics, 1998, Vol. 13, pp. 397-418.
%----------------------------------------------------------------
% written by:
% James P. LeSage, 4/2002
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
% NOTE: some of the speed for large problems comes from:
% the use of methods pioneered by Pace and Barry.
% R. Kelley Pace was kind enough to provide functions
% lndetmc, and lndetint from his spatial statistics toolbox
% for which I'm very grateful.
timet = clock;
% error checking on inputs
[n junk] = size(y);
[n1 k] = size(x);
[n3 n4] = size(W);
time1 = 0;
time2 = 0;
time3 = 0;
results.nobs = n;
results.nvar = k;
results.y = y;
if n1 ~= n
error('sar_g: x-matrix contains wrong # of observations');
elseif n3 ~= n4
error('sar_g: W matrix is not square');
elseif n3~= n
error('sar_g: W matrix is not the same size at y,x');
end;
if nargin == 5
prior.lflag = 1;
end;
[nu,d0,rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,c,T,prior_beta,cc,metflag,delta] = sar_parse(prior,k);
results.delta = delta;
% error checking on prior information inputs
[checkk,junk] = size(c);
if checkk ~= k
error('sar_g: prior means are wrong');
elseif junk ~= 1
error('sar_g: prior means are wrong');
end;
[checkk junk] = size(T);
if checkk ~= k
error('sar_g: prior bcov is wrong');
elseif junk ~= k
error('sar_g: prior bcov is wrong');
end;
results.order = order;
results.iter = iter;
timet = clock; % start the timer
[rmin,rmax,time1] = sar_eigs(eflag,W,rmin,rmax,n);
[detval,time2] = sar_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% storage for draws
bsave = zeros(ndraw-nomit,k);
rsave = zeros(ndraw-nomit,1);
psave = zeros(ndraw-nomit,1);
ssave = zeros(ndraw-nomit,1);
margl = zeros(ndraw-nomit,1);
vmean = zeros(n,1);
ymean = zeros(n,1);
yhat = zeros(n,1);
acc_rate = zeros(ndraw,1);
ccsave = zeros(ndraw,1);
% ====== initializations
% compute this stuff once to save time
TI = inv(T);
TIc = TI*c;
iter = 1;
in = ones(n,1);
V = in;
vi = in;
Wy = sparse(W)*y;
vdraw = delta;
%Prior for degrees of freedom is exponential with mean vl0
vl0=delta;
cc = 5;
pswitch = 0;
acc = 0;
hwait = waitbar(0,'sar\_vg: MCMC sampling ...');
t0 = clock;
iter = 1;
while (iter <= ndraw); % start sampling;
% update beta
xs = matmul(x,sqrt(V));
ys = sqrt(V).*y;
Wys = sqrt(V).*Wy;
AI = inv(xs'*xs + sige*TI);
yss = ys - rho*Wys;
b = xs'*yss + sige*TIc;
b0 = AI*b;
bhat = norm_rnd(sige*AI) + b0;
xb = xs*bhat;
% update sige
nu1 = n + 2*nu;
e = (yss - xb);
d1 = 2*d0 + e'*e;
chi = chis_rnd(1,nu1);
sige = d1/chi;
% update vi
ev = ys - rho*Wys - xs*bhat;
dof = vdraw + 1;
error2 = ev.*ev;
tmp = (1/sige)*error2 + vdraw;
chiv = chis_rnd(n,dof);
V = chiv./tmp;
if metflag == 1
% metropolis step to get rho update
rhox = c_sar(rho,ys,xb,sige,W,detval);
accept = 0;
rho2 = rho + cc*randn(1,1);
while accept == 0
if ((rho2 > rmin) & (rho2 < rmax));
accept = 1;
else
rho2 = rho + cc*randn(1,1);
end;
end;
rhoy = c_sar(rho2,ys,xb,sige,W,detval);
ru = unif_rnd(1,0,1);
if ((rhoy - rhox) > exp(1)),
p = 1;
else,
ratio = exp(rhoy-rhox);
p = min(1,ratio);
end;
if (ru < p)
rho = rho2;
end;
rtmp(iter,1) = rho;
else % we use numerical integration to perform rho-draw
b0 = AI*xs'*ys;
bd = AI*xs'*Wys;
e0 = ys - xs*b0;
ed = Wys - xs*bd;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
[rho mlike] = draw_rho(detval,epe0,eped,epe0d,n,k,rho,sige);
end;
%Random walk Metropolis step for dof
temp = -log(V) + V;
nu = 1/vl0 + .5*sum(temp);
vlcan= vdraw + cc*randn(1,1);
if vlcan>0
lpostcan = .5*n*vlcan*log(.5*vlcan) -n*gammaln(.5*vlcan)...
-nu*vlcan;
lpostdraw = .5*n*vdraw*log(.5*vdraw) -n*gammaln(.5*vdraw)...
-nu*vdraw;
accprob = exp(lpostcan-lpostdraw);
else
accprob=0;
end
%accept candidate draw with log prob = laccprob, else keep old draw
if rand<accprob
vdraw=vlcan;
pswitch=pswitch+1;
acc = acc + 1;
end
acc_rate(iter,1) = acc/iter;
% update cc based on std of rho draws
if acc_rate(iter,1) < 0.4
cc = cc/1.1;
ccsave(iter,1) = cc;
end;
if acc_rate(iter,1) > 0.6
cc = cc*1.1;
ccsave(iter,1) = cc;
end;
if iter > nomit % if we are past burn-in, save the draws
bsave(iter-nomit,1:k) = bhat';
ssave(iter-nomit,1) = sige;
psave(iter-nomit,1) = rho;
margl(iter-nomit,1) = mlike;
vmean = vmean + in./V;
rsave(iter-nomit,1) = vdraw;
end;
iter = iter + 1;
waitbar(iter/ndraw);
end; % end of sampling loop
close(hwait);
vmean = vmean/(ndraw-nomit);
beta = mean(bsave)';
pmean = mean(psave);
results.acc = acc_rate;
results.rdraw = rsave;
yhat = (speye(n) - pmean*W)\(x*beta);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -