📄 sar_g.m
字号:
function results = sar_g(y,x,W,ndraw,nomit,prior)
% PURPOSE: Bayesian estimates of the spatial autoregressive model
% y = rho*W*y + XB + e, e = N(0,sige*V), V = diag(v1,v2,...vn)
% r/vi = ID chi(r)/r, r = Gamma(m,k)
% B = N(c,T),
% 1/sige = Gamma(nu,d0),
% rho = Uniform(rmin,rmax), or rho = beta(a1,a2);
%-------------------------------------------------------------
% USAGE: results = sar_g(y,x,W,ndraw,nomit,prior)
% where: y = dependent variable vector (nobs x 1)
% x = independent variables matrix (nobs x nvar)
% W = spatial weight matrix (standardized, row-sums = 1)
% ndraw = # of draws
% nomit = # of initial draws omitted for burn-in
% prior = a structure variable with:
% prior.beta = prior means for beta, c above (default 0)
% priov.bcov = prior beta covariance , T above (default 1e+12)
% prior.rval = r prior hyperparameter, default = 4
% prior.novi = 1 turns off sampling for vi, producing homoscedastic model
% prior.m = informative Gamma(m,k) prior on r
% prior.k = (default: not used)
% prior.nu = informative Gamma(nu,d0) prior on sige
% prior.d0 = default: nu=0,d0=0 (diffuse prior)
% prior.a1 = parameter for beta(a1,a2) prior on rho see: 'help beta_prior'
% prior.a2 = (default = 1.0, a uniform prior on rmin,rmax)
% prior.eig = 0 for default rmin = -1,rmax = +1, 1 for eigenvalue calculation of these
% prior.rmin = (optional) min rho used in sampling (default = -1)
% prior.rmax = (optional) max rho used in sampling (default = 1)
% prior.lflag = 0 for full lndet computation (default = 1, fastest)
% = 1 for MC approx (fast for large problems)
% = 2 for Spline approx (medium speed)
% prior.order = order to use with prior.lflag = 1 option (default = 50)
% prior.iter = iters to use with prior.lflag = 1 option (default = 30)
% prior.lndet = a matrix returned by sar, sar_g, sarp_g, etc.
% containing log-determinant information to save time
% prior.logm = 0 for no log marginal calculation, = 1 for log marginal (default = 1)
%-------------------------------------------------------------
% RETURNS: a structure:
% results.meth = 'sar_g'
% results.beta = posterior mean of bhat based on draws
% results.rho = posterior mean of rho based on draws
% results.sige = posterior mean of sige based on draws
% results.sigma = posterior mean of sige based on (e'*e)/(n-k)
% results.bdraw = bhat draws (ndraw-nomit x nvar)
% results.pdraw = rho draws (ndraw-nomit x 1)
% results.sdraw = sige draws (ndraw-nomit x 1)
% results.vmean = mean of vi draws (nobs x 1)
% results.rdraw = r draws (ndraw-nomit x 1) (if m,k input)
% results.bmean = b prior means, prior.beta from input
% results.bstd = b prior std deviations sqrt(diag(prior.bcov))
% results.r = value of hyperparameter r (if input)
% results.novi = 1 for prior.novi = 1, 0 for prior.rval input
% results.nobs = # of observations
% results.nvar = # of variables in x-matrix
% results.ndraw = # of draws
% results.nomit = # of initial draws omitted
% results.y = y-vector from input (nobs x 1)
% results.yhat = mean of posterior predicted (nobs x 1)
% results.resid = residuals, based on posterior means
% results.rsqr = r-squared based on posterior means
% results.rbar = adjusted r-squared
% results.nu = nu prior parameter
% results.d0 = d0 prior parameter
% results.a1 = a1 parameter for beta prior on rho from input, or default value
% results.a2 = a2 parameter for beta prior on rho from input, or default value
% results.time1 = time for eigenvalue calculation
% results.time2 = time for log determinant calcluation
% results.time3 = time for sampling
% results.time = total time taken
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.tflag = 'plevel' (default) for printing p-levels
% = 'tstat' for printing bogus t-statistics
% results.lflag = lflag from input
% results.iter = prior.iter option from input
% results.order = prior.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95]
% intervals for the case of lflag = 1
% results.lndet = a matrix containing log-determinant information
% (for use in later function calls to save time)
% results.mlike = log marginal likelihood (a vector ranging over
% rho values that can be integrated for model comparison)
% --------------------------------------------------------------
% NOTES: - use either improper prior.rval
% or informative Gamma prior.m, prior.k, not both of them
% - for n < 1000 you should use lflag = 0 to get exact results
% - use a1 = 1.0 and a2 = 1.0 for uniform prior on rho
% - results.mlike can be used for model comparison (see model_compare.m for a demonstration)
% --------------------------------------------------------------
% SEE ALSO: (sar_gd, sar_gd2 demos) prt
% --------------------------------------------------------------
% REFERENCES: James P. LeSage, `Bayesian Estimation of Spatial Autoregressive
% Models', International Regional Science Review, 1997
% Volume 20, number 1\&2, pp. 113-129.
% For lndet information see: Ronald Barry and R. Kelley Pace,
% "A Monte Carlo Estimator of the Log Determinant of Large Sparse Matrices",
% Linear Algebra and its Applications", Volume 289, Number 1-3, 1999, pp. 41-54.
% and: R. Kelley Pace and Ronald P. Barry
% "Simulating Mixed Regressive Spatially autoregressive Estimators",
% Computational Statistics, 1998, Vol. 13, pp. 397-418.
%----------------------------------------------------------------
% written by:
% James P. LeSage, last updated 10/2003
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
% NOTE: some of the speed for large problems comes from:
% the use of methods pioneered by Pace and Barry.
% R. Kelley Pace was kind enough to provide functions
% lndetmc, and lndetint from his spatial statistics toolbox
% for which I'm very grateful.
timet = clock;
% error checking on inputs
[n junk] = size(y);
[n1 k] = size(x);
[n3 n4] = size(W);
time1 = 0;
time2 = 0;
time3 = 0;
nobsa = n;
results.nobs = n;
results.nvar = k;
results.y = y;
if n1 ~= n
error('sar_g: x-matrix contains wrong # of observations');
elseif n3 ~= n4
error('sar_g: W matrix is not square');
elseif n3~= n
error('sar_g: W matrix is not the same size at y,x');
end;
if nargin == 5
prior.lflag = 1;
end;
[nu,d0,rval,mm,kk,rho,sige,rmin,rmax,detval,ldetflag, ...
eflag,order,iter,novi_flag,c,T,inform_flag,a1,a2,logmflag] = sar_parse(prior,k);
% error checking on prior information inputs
[checkk,junk] = size(c);
if checkk ~= k
error('sar_g: prior means are wrong');
elseif junk ~= 1
error('sar_g: prior means are wrong');
end;
[checkk junk] = size(T);
if checkk ~= k
error('sar_g: prior bcov is wrong');
elseif junk ~= k
error('sar_g: prior bcov is wrong');
end;
results.order = order;
results.iter = iter;
timet = clock; % start the timer
[rmin,rmax,time1] = sar_eigs(eflag,W,rmin,rmax,n);
[detval,time2] = sar_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% storage for draws
bsave = zeros(ndraw-nomit,k);
if mm~= 0
rsave = zeros(ndraw-nomit,1);
end;
psave = zeros(ndraw-nomit,1);
ssave = zeros(ndraw-nomit,1);
vmean = zeros(n,1);
acc_rate = zeros(ndraw,1);
% ====== initializations
% compute this stuff once to save time
TI = inv(T);
TIc = TI*c;
iter = 1;
in = ones(n,1);
V = in;
vi = in;
Wy = sparse(W)*y;
switch novi_flag
case{0} % we do heteroscedastic model
hwait = waitbar(0,'sar\_g: MCMC sampling ...');
t0 = clock;
iter = 1;
while (iter <= ndraw); % start sampling;
% update beta
xs = matmul(x,sqrt(V));
ys = sqrt(V).*y;
Wys = sqrt(V).*Wy;
AI = inv(xs'*xs + sige*TI);
yss = ys - rho*Wys;
xpy = xs'*yss;
b = xs'*yss + sige*TIc;
b0 = AI*b;
bhat = norm_rnd(sige*AI) + b0;
xb = xs*bhat;
% update sige
nu1 = nobsa + 2*nu;
e = (yss - xb);
d1 = 2*d0 + e'*e;
chi = chis_rnd(1,nu1);
sige = d1/chi;
% update vi
ev = y - rho*Wy - x*bhat;
%chiv = chis_rnd(n,rval+1);
chiv = chi2rnd(rval+1,n,1);
vi = ((ev.*ev/sige) + in*rval)./chiv;
V = in./vi;
% update rval
if mm ~= 0
rval = gamm_rnd(1,1,mm,kk);
end;
% we use griddy Gibbs to perform rho-draw
b0 = (xs'*xs + sige*TI )\(xs'*ys + sige*TIc);
bd = (xs'*xs + sige*TI)\(xs'*Wys + sige*TIc);
e0 = ys - xs*b0;
ed = Wys - xs*bd;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
logdetx = log(det(xs'*xs + TI));
rho = draw_rho(detval,epe0,eped,epe0d,n,k,rho,a1,a2,logdetx);
if iter > nomit % if we are past burn-in, save the draws
bsave(iter-nomit,1:k) = bhat';
ssave(iter-nomit,1) = sige;
psave(iter-nomit,1) = rho;
vmean = vmean + vi;
if mm~= 0
rsave(iter-nomit,1) = rval;
end;
end;
iter = iter + 1;
waitbar(iter/ndraw);
end; % end of sampling loop
close(hwait);
time3 = etime(clock,t0);
% compute posterior means and log marginal likelihood for return arguments
bmean = mean(bsave);
beta = bmean';
rho = mean(psave);
sige = mean(ssave);
results.sige = sige;
vmean = vmean/(ndraw-nomit);
V = in./vmean;
[nobs,nvar] = size(x);
if logmflag == 1
xs = matmul(x,sqrt(V));
ys = sqrt(V).*y;
Wys = sqrt(V).*Wy;
AI = inv(xs'*xs + sige*TI);
b0 = AI*(xs'*ys + sige*TIc);
bd = AI*(xs'*Wys + sige*TIc);
e0 = ys - xs*b0;
ed = Wys - xs*bd;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
logdetx = log(det(xs'*xs + sige*TI));
mlike = sar_marginal(detval,e0,ed,epe0,eped,epe0d,nobs,nvar,logdetx,a1,a2);
yhat = (speye(nobs) - rho*W)\(x*beta);
e = y - yhat;
elseif logmflag == 0
xs = matmul(x,sqrt(V));
ys = sqrt(V).*y;
yhat = (speye(nobs) - rho*W)\(x*beta);
e = y - yhat;
end;
% compute R-squared
epe = e'*e;
sige = epe/(n-k);
results.sigma = sige;
ym = y - mean(y);
rsqr1 = epe;
rsqr2 = ym'*ym;
results.rsqr = 1- rsqr1/rsqr2; % r-squared
rsqr1 = rsqr1/(nobs-nvar);
rsqr2 = rsqr2/(nobs-1.0);
results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared
time = etime(clock,timet);
results.meth = 'sar_g';
results.beta = beta;
results.rho = rho;
results.bdraw = bsave;
results.pdraw = psave;
results.sdraw = ssave;
if logmflag == 1
results.mlike = mlike;
end;
results.vmean = vmean;
results.yhat = yhat;
results.resid = e;
results.bmean = c;
results.bstd = sqrt(diag(T));
results.ndraw = ndraw;
results.nomit = nomit;
results.time = time;
results.time1 = time1;
results.time2 = time2;
results.time3 = time3;
results.nu = nu;
results.d0 = d0;
results.a1 = a1;
results.a2 = a2;
results.tflag = 'plevel';
results.rmax = rmax;
results.rmin = rmin;
results.lflag = ldetflag;
results.lndet = detval;
results.novi = novi_flag;
results.priorb = inform_flag;
if mm~= 0
results.rdraw = rsave;
results.m = mm;
results.k = kk;
else
results.r = rval;
results.rdraw = 0;
end;
case{1} % we do homoscedastic model
hwait = waitbar(0,'sar\_g: MCMC sampling ...');
t0 = clock;
iter = 1;
xpx = x'*x;
xpy = x'*y;
Wy = W*y;
xpWy = x'*Wy;
while (iter <= ndraw); % start sampling;
% update beta
AI = inv(xpx + sige*TI);
ys = y - rho*Wy;
b = x'*ys + sige*TIc;
b0 = AI*b;
bhat = norm_rnd(sige*AI) + b0;
xb = x*bhat;
% update sige
nu1 = n + 2*nu;
%e = e0 - rho*ed;
e = (ys - xb);
d1 = 2*d0 + e'*e;
chi = chis_rnd(1,nu1);
sige = d1/chi;
% update rho using griddy Gibbs
AI = inv(xpx + sige*TI);
b0 = AI*(xpy + sige*TIc);
bd = AI*(xpWy + sige*TIc);
e0 = y - x*b0;
ed = Wy - x*bd;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
logdetx = 0.5*log(det(x'*x + sige*TI));
rho = draw_rho(detval,epe0,eped,epe0d,n,k,rho,a1,a2,logdetx);
if iter > nomit % if we are past burn-in, save the draws
bsave(iter-nomit,1:k) = bhat';
ssave(iter-nomit,1) = sige;
psave(iter-nomit,1) = rho;
end;
iter = iter + 1;
waitbar(iter/ndraw);
end; % end of sampling loop
close(hwait);
time3 = etime(clock,t0);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -