📄 sar_gcbma.m
字号:
function results = sar_gcbma(y,x,W,ndraw,prior)
% PURPOSE: MC^3 x-matrix specification for homoscedastic SAR model
% where the model contains an intercept
% ------------------------------------------------------
% usage: results = sar_gcbma(y,x,W,ndraw,prior)
% where: % where: y = dependent variable vector (nobs x 1)
% x = studentized or well-scaled x-matrix with no intercept
% W = spatial weight matrix (standardized, row-sums = 1)
% ndraw = # of draws
% prior = a structure variable with:
% prior.g = g-value for g-prior, default: max(1/n,1/k^2)
% prior.nmodels = # of top models to save (default = 1000)
% prior.nu = informative Gamma(nu,d0) prior on sige
% prior.d0 = default: nu=0,d0=0 (diffuse prior)
% prior.a1 = parameter for beta(a1,a2) prior on rho (default = 1.01)
% prior.a2 = (default = 1.01) see: 'help beta_prior'
% prior.eig = 0 for default rmin = -1,rmax = +1, 1 for eigenvalue calculation of these
% prior.rmin = (optional) min rho used in sampling (default = -1)
% prior.rmax = (optional) max rho used in sampling (default = 1)
% prior.lflag = 0 for full lndet computation (default = 1, fastest)
% = 1 for MC approx (fast for large problems)
% = 2 for Spline approx (medium speed)
% prior.order = order to use with prior.lflag = 1 option (default = 50)
% prior.iter = iters to use with prior.lflag = 1 option (default = 30)
% prior.lndet = a matrix returned by sar, sar_g, sarp_g, etc.
% containing log-determinant information to save time
%-------------------------------------------------------------
% RETURNS: a structure:
% results.meth = 'sar_gcbma'
% results.g = g-value for prior (from input, or default value)
% results.munique = # of unique models found
% results.nmodels = # of top models to save from input or (default = 1000)
% results.freq = a matrix with frequency distribution of
% variables appearing in all unique models found
% results.models = a matrix with only information for top nmodels
% results.allmodels = a matrix with information on all unique models found
% results.mprob = a vector of posterior model probabilities based on all unique models
% results.vprob = a vector of variable probabilities based on all unique models
% results.nobs = # of observations
% results.nvar = # of variables in x-matrix
% results.ndraw = # of draws
% results.y = y-vector from input (nobs x 1)
% results.nu = nu prior parameter
% results.d0 = d0 prior parameter
% results.a1 = a1 parameter for beta prior on rho from input, or default value
% results.a2 = a2 parameter for beta prior on rho from input, or default value
% results.time1 = time for eigenvalue calculation
% results.time2 = time for log determinant calcluation
% results.time3 = time for BMA sampling
% results.time = total time taken
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.lflag = lflag from input
% results.iter = prior.iter option from input
% results.order = prior.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95]
% intervals for the case of lflag = 1
% results.dflag = dflag value from input (or default value used)
% results.lndet = a matrix containing log-determinant information
% (for use in later function calls to save time)
% --------------------------------------------------------------
% NOTES: 1) the log-marginals for the top 1000 models are written to a file lmarginal.sar
% as vectors over a grid of rho values for later use
% 2) the model descriptions for the top 1000 models are written to a file models.sar
% --------------------------------------------------------------
% SEE ALSO: prt_bmas(), for printing results
% model_averages() function, that can be used to construct
% estimates based on averaging over models using posterior
% model probabilities as weights
% --------------------------------------------------------------
% REFERENCES: James P. LeSage and Olivier Parent,
% `Bayesian Model Averaging for Spatial Econometric Models', working paper
%
% Fernandez,Carmen, Eduardo Ley, and Mark F. J. Steel, (2001a)
%'Model uncertainty in cross-country growth regressions,'
% Journal of Applied Econometrics}, Volume 16, number 5, pp. 563 - 576.
%
% Fernandez,Carmen, Eduardo Ley, and Mark F. J. Steel, (2001b)
% 'Benchmark priors for Bayesian model averaging', Journal of Econometrics
% Volume 100, number 2, pp. 381-427.
%----------------------------------------------------------------
% written by:
% James P. LeSage, last updated 6/2004
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
% NOTE: some of the speed for large problems comes from:
% the use of methods pioneered by Pace and Barry.
% R. Kelley Pace was kind enough to provide functions
% lndetmc, and lndetint from his spatial statistics toolbox
% for which I'm very grateful.
% error checking on inputs
[n junk] = size(y);
[n1 k] = size(x);
[n3 n4] = size(W);
time1 = 0;
time2 = 0;
time3 = 0;
time4 = 0;
nobsa = n;
results.nobs = n;
results.nvar = k;
results.y = y;
if n1 ~= n
error('sar_gcbma: x-matrix contains wrong # of observations');
elseif n3 ~= n4
error('sar_gcbma: W matrix is not square');
elseif n3~= n
error('sar_gcbma: W matrix is not the same size at y,x');
end;
if nargin == 4
prior.lflag = 1;
end;
[nu,d0,rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,a1,a2,g,gmodels] = sar_parse(prior,x);
results.order = order;
results.iter = iter;
timet = clock; % start the timer
[rmin,rmax,time1] = sar_eigs(eflag,W,rmin,rmax,n);
results.time1 = time1;
[detval,time2] = sar_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
results.time2 = time2;
na = length(detval(:,1));
% overide nmodels to speed things up
nmodels = min([gmodels 10]);
gmodels = max([1000 gmodels]);
% storage for draws
nvar = k;
maxlog = ones(gmodels,1)*(-Inf);
vsave = zeros(ndraw,nvar);
msave = zeros(1,nvar);
visits = zeros(ndraw,1);
lsave = zeros(na,1);
vfreqs = zeros(1,nvar);
modsave = zeros(gmodels,nvar); % storage for definition of 1000 best models
logsave = zeros(gmodels,na);
% ====== initializations
% compute this stuff once to save time
in = ones(n,1);
Wy = sparse(W)*y;
% start with a random selection of variables
vtmp=zeros(nvar,1);
for v=1:nvar
vtmp(v)=bino_rnd(1,0.5,1,1);
end
vin=selif(seqa(1,1,nvar).*vtmp,vtmp)';
vout=delif(seqa(1,1,nvar)-seqa(1,1,nvar).*vtmp,vtmp)';
cnt = 0;
%<====================== start draws
t0 = clock;
hwait = waitbar(0,'SAR BMA : MCMC sampling ...');
for i=1:ndraw;
% choose new model
[vinew vonew] = sample(vin,vout);
for j=1:length(vinew);
vsave(i,vinew(1,j)) = 1.0;
end;
vfreqs = vfreqs + vsave(i,:);
[j visits] = find_new(i,vsave,vinew,visits);
if i == 1 % first draw, compute logpost for initial model
lmarg = bmapost(y,x,vinew,W,detval,a1,a2,nu,d0,g);
maxl = max(lmarg);
maxlog(i,1) = maxl;
lsave = [lsave lmarg];
msave = [msave
vsave(i,:)];
modsave(i,:) = vsave(i,:);
logsave(i,:) = lmarg';
cnt = cnt+1; % count of unique models found
lmarg_old = lmarg;
end; % end of if i == 1
if visits(i,1) ~= 0 % we found a new model
cnt = cnt+1; % increase counter for new models
lmarg_new = bmapost(y,x,vinew,W,detval,a1,a2,nu,d0,g);
if cnt < gmodels
lsave = [lsave lmarg_new];
msave = [msave
vsave(i,:)];
end;
maxl = max(lmarg_new);
if cnt < gmodels
maxlog(cnt,1) = maxl;
modsave(cnt,:) = vsave(i,:);
logsave(cnt,:) = lmarg_new';
elseif cnt == gmodels
maxlog(cnt,1) = maxl;
modsave(cnt,:) = vsave(i,:);
logsave(cnt,:) = lmarg_new';
% sort the maxlog vector
[maxlog,maxi] = sort(maxlog);
tmp = logsave(maxi,:); % bring along the log-marginals matrix
logsave = tmp;
tmp = modsave(maxi,:); % bring along the model definitions
modsave = tmp;
else
ind = find(maxl > maxlog);
if length(ind) == 0
% we don't save this log-marginal
else
% insert this log-marginal vector into the 1000 best models
% pitch lowest log-marginal
if length(ind) == 1 % special case where we replace just the lowest
logsave(1,:) = lmarg_new';
modsave(1,:) = vsave(i,:); % replace model definitions
else
logsave(1:ind(end-1),:) = logsave(2:ind(end),:); % pitch the lowest
logsave(ind(end),:) = lmarg_new'; % insert the new one
modsave(1:ind(end-1),:) = modsave(2:ind(end),:); % pitch the lowest model defintiion
modsave(ind(end),:) = vsave(i,:); % insert the new model definition
end;
end;
end;
else % we have a model that we have already computed the log-marginal for
% so, we could look it up.
if cnt < gmodels
tmps = matsub(vsave(i,:),msave);
ind = ~any(tmps');
chk = find(ind == 1);
lmarg_new = lsave(:,chk(1,1));
else
% recompute it
lmarg_new = bmapost(y,x,vinew,W,detval,a1,a2,nu,d0,g);
end;
end;
bf = model_odds(detval(:,1),lmarg_new,lmarg_old);
if bf >=1;
flag = 1;
else
flag = bino_rnd(1,bf,1,1);
end;
if flag == 1 % change models
vin = vinew;
vout = vonew;
lmarg_old = lmarg_new;
end;
waitbar(i/ndraw);
end; % end of sampling loop
close(hwait);
time3 = abs(etime(clock,t0));
results.time3 = time3;
vfreqs = vfreqs/ndraw;
results.munique = cnt;
% write out results for 1000 best models
tmp = logsave(1:cnt,:);
save lmarginal.sar tmp -ascii;
tmp = modsave(1:cnt,:);
save models.sar tmp -ascii;
psum = 0.0;
posts = [];
na = length(detval);
load lmarginal.sar;
load models.sar;
[nlog,na] = size(lmarginal);
adj = max(max(lmarginal));
madj = lmarginal - adj;
tmp = exp(madj);
% trapezoid rule integration
for i=1:nlog
xx = tmp(i,:)';
yy = detval(:,1).*ones(na,1);
isum = 0.0;
isum = sum(diff(yy).*(xx(1:end-1)+xx(2:end))/2);
% compute posterior probability
psum = psum + isum;
posts = [posts
isum];
end;
postprob = posts/psum;
[probs_sort,pind] = sort(postprob);
results.mprob = probs_sort;
msort = models(pind,:);
out = [msort probs_sort];
results.allmodels = out; % put out results for all unique models found
[no,junk] = size(out);
% just pull out nmodels requested by the user
if (nmodels > no) % the user wants more models output than were found
nmodels = no; % we can only output what was found
else
% the user is okay
end;
results.vprob = vfreqs; % compute variable probabilities based on
% all unique models found
results.models = msort(no-nmodels+1:no,:);
results.ndraw = ndraw;
results.nu = nu;
results.d0 = d0;
results.a1 = a1;
results.a2 = a2;
results.rmax = rmax;
results.rmin = rmin;
results.lflag = ldetflag;
results.lndet = detval;
results.g = g;
function [nu,d0,rho,sige,rmin,rmax,detval,ldetflag,eflag,order,iter,a1,a2,g,gmodels] = sar_parse(prior,x)
% PURPOSE: parses input arguments for sar_gcbma models
% ---------------------------------------------------
% USAGE: [nu,d0,rho,sige,rmin,rmax,detval,ldetflag,eflag,mflag,order,iter,a1,a2,g] =
% sar_parse(prior,x)
% where prior contains the structure variable with inputs,
% x is the matrix of explanatory variables input
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% set defaults
[n,k] = size(x);
g1 = (k*k);
g2 = n;
g = 1/max([g1 g2]); % Fernandez, Ley Steel default g-value
gmodels = 1000;
eflag = 0; % default to not computing eigenvalues
ldetflag = 1; % default to 1999 Pace and Barry MC determinant approx
order = 50; % there are parameters used by the MC det approx
iter = 30; % defaults based on Pace and Barry recommendation
rmin = -1; % use -1,1 rho interval as default
rmax = 1;
detval = 0; % just a flag
rho = 0.5;
sige = 1.0;
nu = 0;
d0 = 0;
a1 = 1.01;
a2 = 1.01;
fields = fieldnames(prior);
nf = length(fields);
if nf > 0
for i=1:nf
if strcmp(fields{i},'nu')
nu = prior.nu;
elseif strcmp(fields{i},'d0')
d0 = prior.d0;
elseif strcmp(fields{i},'g')
g = prior.g;
elseif strcmp(fields{i},'nmodels')
gmodels = prior.nmodels;
elseif strcmp(fields{i},'dflag')
metflag = prior.dflag;
elseif strcmp(fields{i},'a1')
a1 = prior.a1;
elseif strcmp(fields{i},'a2')
a2 = prior.a2;
elseif strcmp(fields{i},'rmin')
rmin = prior.rmin; eflag = 0;
elseif strcmp(fields{i},'rmax')
rmax = prior.rmax; eflag = 0;
elseif strcmp(fields{i},'lndet')
detval = prior.lndet;
ldetflag = -1;
eflag = 0;
rmin = detval(1,1);
nr = length(detval);
rmax = detval(nr,1);
elseif strcmp(fields{i},'lflag')
tst = prior.lflag;
if tst == 0,
ldetflag = 0;
elseif tst == 1,
ldetflag = 1;
elseif tst == 2,
ldetflag = 2;
else
error('sar_g: unrecognizable lflag value on input');
end;
elseif strcmp(fields{i},'order')
order = prior.order;
elseif strcmp(fields{i},'iter')
iter = prior.iter;
elseif strcmp(fields{i},'dflag')
metflag = prior.dflag;
elseif strcmp(fields{i},'eig')
eflag = prior.eig;
end;
end;
else, % the user has input a blank info structure
% so we use the defaults
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -