📄 sar.m
字号:
% b0 = AI*xs'*ys;
% bd = AI*xs'*Wys;
% e0 = ys - xs*b0;
% ed = Wys - xs*bd;
% epe0 = e0'*e0;
% eped = ed'*ed;
% epe0d = ed'*e0;
% ---------------------------------------------------
% RETURNS: a scalar equal to minus the log-likelihood
% function value at the parameter rho
% ---------------------------------------------------
% NOTE: this is really two functions depending
% on nargin = 3 or nargin = 4 (see the function)
% --------------------------------------------------
% SEE ALSO: sar, f_far, f_sac, f_sem
% ---------------------------------------------------
% written by: James P. LeSage 1/2000
% University of Toledo
% Department of Economics
% Toledo, OH 43606
% jlesage@spatial-econometrics.com
if nargin == 6
gsize = detval(2,1) - detval(1,1);
% Note these are actually log detvalues
i1 = find(detval(:,1) <= rho + gsize);
i2 = find(detval(:,1) <= rho - gsize);
i1 = max(i1);
i2 = max(i2);
index = round((i1+i2)/2);
if isempty(index)
index = 1;
end;
detm = detval(index,2);
z = epe0 - 2*rho*epe0d + rho*rho*eped;
llike = (n/2)*log(z) - detm;
else
error('f_sar: Wrong # of input arguments');
end;
function llike = f2_sar(parm,y,x,W,detval)
% PURPOSE: evaluates log-likelihood -- given ML estimates
% spatial autoregressive model using sparse matrix algorithms
% ---------------------------------------------------
% USAGE:llike = f2_sar(parm,y,X,W,ldet)
% where: parm = vector of maximum likelihood parameters
% parm(1:k-2,1) = b, parm(k-1,1) = rho, parm(k,1) = sige
% y = dependent variable vector (n x 1)
% X = explanatory variables matrix (n x k)
% W = spatial weight matrix
% ldet = matrix with [rho log determinant] values
% computed in sar.m using one of Kelley Pace's routines
% ---------------------------------------------------
% RETURNS: a scalar equal to minus the log-likelihood
% function value at the ML parameters
% --------------------------------------------------
% NOTE: this is really two functions depending
% on nargin = 4 or nargin = 5 (see the function)
% ---------------------------------------------------
% SEE ALSO: sar, f2_far, f2_sac, f2_sem
% ---------------------------------------------------
% written by: James P. LeSage 1/2000
% University of Toledo
% Department of Economics
% Toledo, OH 43606
% jlesage@spatial.econometrics.com
n = length(y);
k = length(parm);
b = parm(1:k-2,1);
rho = parm(k-1,1);
sige = parm(k,1);
gsize = detval(2,1) - detval(1,1);
i1 = find(detval(:,1) <= rho + gsize);
i2 = find(detval(:,1) <= rho - gsize);
i1 = max(i1);
i2 = max(i2);
index = round((i1+i2)/2);
if isempty(index)
index = 1;
end;
detm = detval(index,2);
e = y-x*b-rho*sparse(W)*y;
epe = e'*e;
tmp2 = 1/(2*sige);
llike = -(n/2)*log(pi) - (n/2)*log(sige) + detm - tmp2*epe;
function [rmin,rmax,convg,maxit,detval,ldetflag,eflag,order,iter,options] = sar_parse(info)
% PURPOSE: parses input arguments for sar model
% ---------------------------------------------------
% USAGE: [rmin,rmax,convg,maxit,detval,ldetflag,eflag,order,iter,options] = sar_parse(info)
% where info contains the structure variable with inputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% set defaults
options = zeros(1,18); % optimization options for fminbnd
options(1) = 0;
options(2) = 1.e-6;
options(14) = 500;
eflag = 0; % default to not computing eigenvalues
ldetflag = 1; % default to 1999 Pace and Barry MC determinant approx
order = 50; % there are parameters used by the MC det approx
iter = 30; % defaults based on Pace and Barry recommendation
rmin = -1; % use -1,1 rho interval as default
rmax = 1;
detval = 0; % just a flag
convg = 0.0001;
maxit = 500;
fields = fieldnames(info);
nf = length(fields);
if nf > 0
for i=1:nf
if strcmp(fields{i},'rmin')
rmin = info.rmin; eflag = 0;
elseif strcmp(fields{i},'rmax')
rmax = info.rmax; eflag = 0;
elseif strcmp(fields{i},'convg')
options(2) = info.convg;
elseif strcmp(fields{i},'maxit')
options(14) = info.maxit;
elseif strcmp(fields{i},'lndet')
detval = info.lndet;
ldetflag = -1;
eflag = 0;
rmin = detval(1,1);
nr = length(detval);
rmax = detval(nr,1);
elseif strcmp(fields{i},'lflag')
tst = info.lflag;
if tst == 0,
ldetflag = 0; % compute full lndet, no approximation
elseif tst == 1,
ldetflag = 1; % use Pace-Barry approximation
elseif tst == 2,
ldetflag = 2; % use spline interpolation approximation
else
error('sar: unrecognizable lflag value on input');
end;
elseif strcmp(fields{i},'order')
order = info.order;
elseif strcmp(fields{i},'eig')
eflag = info.eig;
elseif strcmp(fields{i},'iter')
iter = info.iter;
end;
end;
else, % the user has input a blank info structure
% so we use the defaults
end;
function [rmin,rmax,time2] = sar_eigs(eflag,W,rmin,rmax,n);
% PURPOSE: compute the eigenvalues for the weight matrix
% ---------------------------------------------------
% USAGE: [rmin,rmax,time2] = far_eigs(eflag,W,rmin,rmax,W)
% where eflag is an input flag, W is the weight matrix
% rmin,rmax may be used as default outputs
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
if eflag == 1 % do eigenvalue calculations
t0 = clock;
opt.tol = 1e-3; opt.disp = 0;
lambda = eigs(sparse(W),speye(n),1,'SR',opt);
rmin = real(1/lambda);
rmax = 1.0;
time2 = etime(clock,t0);
else % use rmin,rmax arguments from input or defaults -1,1
time2 = 0;
end;
function [detval,time1] = sar_lndet(ldetflag,W,rmin,rmax,detval,order,iter);
% PURPOSE: compute the log determinant |I_n - rho*W|
% using the user-selected (or default) method
% ---------------------------------------------------
% USAGE: detval = far_lndet(lflag,W,rmin,rmax)
% where eflag,rmin,rmax,W contains input flags
% and the outputs are either user-inputs or default values
% ---------------------------------------------------
% do lndet approximation calculations if needed
if ldetflag == 0 % no approximation
t0 = clock;
out = lndetfull(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 1 % use Pace and Barry, 1999 MC approximation
t0 = clock;
out = lndetmc(order,iter,W,rmin,rmax);
time1 = etime(clock,t0);
results.limit = [out.rho out.lo95 out.lndet out.up95];
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == 2 % use Pace and Barry, 1998 spline interpolation
t0 = clock;
out = lndetint(W,rmin,rmax);
time1 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
elseif ldetflag == -1 % the user fed down a detval matrix
time1 = 0;
% check to see if this is right
if detval == 0
error('sar: wrong lndet input argument');
end;
[n1,n2] = size(detval);
if n2 ~= 2
error('sar: wrong sized lndet input argument');
elseif n1 == 1
error('sar: wrong sized lndet input argument');
end;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -