📄 sar.m
字号:
function results = sar(y,x,W,info)
% PURPOSE: computes spatial autoregressive model estimates
% y = p*W*y + X*b + e, using sparse matrix algorithms
% ---------------------------------------------------
% USAGE: results = sar(y,x,W,info)
% where: y = dependent variable vector
% x = explanatory variables matrix
% W = standardized contiguity matrix
% info = an (optional) structure variable with input options:
% info.rmin = (optional) minimum value of rho to use in search (default = -1)
% info.rmax = (optional) maximum value of rho to use in search (default = +1)
% info.eig = 0 for default rmin = -1,rmax = +1, 1 for eigenvalue calculation of these
% info.convg = (optional) convergence criterion (default = 1e-8)
% info.maxit = (optional) maximum # of iterations (default = 500)
% info.lflag = 0 for full lndet computation (default = 1, fastest)
% = 1 for MC lndet approximation (fast for very large problems)
% = 2 for Spline lndet approximation (medium speed)
% info.order = order to use with info.lflag = 1 option (default = 50)
% info.iter = iterations to use with info.lflag = 1 option (default = 30)
% info.lndet = a matrix returned by sar, sar_g, sarp_g, etc.
% containing log-determinant information to save time
% ---------------------------------------------------
% RETURNS: a structure
% results.meth = 'sar'
% results.beta = bhat (nvar x 1) vector
% results.rho = rho
% results.tstat = asymp t-stat (last entry is rho)
% results.bstd = std of betas (nvar x 1) vector
% results.pstd = std of rho
% results.yhat = yhat (nobs x 1) vector
% results.resid = residuals (nobs x 1) vector
% results.sige = sige = (y-p*W*y-x*b)'*(y-p*W*y-x*b)/n
% results.rsqr = rsquared
% results.rbar = rbar-squared
% results.lik = log likelihood
% results.nobs = # of observations
% results.nvar = # of explanatory variables in x
% results.y = y data vector
% results.iter = # of iterations taken
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.lflag = lflag from input
% results.liter = info.iter option from input
% results.order = info.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95] intervals
% for the case of lflag = 1
% results.time1 = time for log determinant calcluation
% results.time2 = time for eigenvalue calculation
% results.time3 = time for hessian or information matrix calculation
% results.time4 = time for optimization
% results.time = total time taken
% results.lndet = a matrix containing log-determinant information
% (for use in later function calls to save time)
% --------------------------------------------------
% NOTES: if you use lflag = 1 or 2, info.rmin will be set = -1
% info.rmax will be set = 1
% For n < 1000 you should use lflag = 0 to get exact results
% --------------------------------------------------
% SEE ALSO: prt(results), sac, sem, sdm, sar, far
% ---------------------------------------------------
% REFERENCES: Anselin (1988), pages 180-182.
% For lndet information see: Ronald Barry and R. Kelley Pace,
% "A Monte Carlo Estimator of the Log Determinant of Large Sparse Matrices",
% Linear Algebra and its Applications", Volume 289, Number 1-3, 1999, pp. 41-54.
% and: R. Kelley Pace and Ronald P. Barry
% "Simulating Mixed Regressive Spatially autoregressive Estimators",
% Computational Statistics, 1998, Vol. 13, pp. 397-418.
% ---------------------------------------------------
% written by:
% James P. LeSage, 1/2000
% Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jlesage@spatial.econometrics.com
% NOTE: much of the speed for large problems comes from:
% the use of methods pioneered by Pace and Barry.
% R. Kelley Pace was kind enough to provide functions
% lndetmc, and lndetint from his spatial statistics toolbox
% for which I'm very grateful.
time1 = 0;
time2 = 0;
time3 = 0;
time4 = 0;
timet = clock; % start the clock for overall timing
% check size of user inputs for comformability
[n nvar] = size(x); [n1 n2] = size(W);
if n1 ~= n2
error('sar: wrong size weight matrix W');
elseif n1 ~= n
error('sar: wrong size weight matrix W');
end;
[nchk junk] = size(y);
if nchk ~= n
error('sar: wrong size y vector input');
end;
% if we have no options, invoke defaults
if nargin == 3
info.lflag = 1;
end;
% parse input options
[rmin,rmax,convg,maxit,detval,ldetflag,eflag,order,miter,options] = sar_parse(info);
% compute eigenvalues or limits
[rmin,rmax,time2] = sar_eigs(eflag,W,rmin,rmax,n);
% do log-det calculations
[detval,time1] = sar_lndet(ldetflag,W,rmin,rmax,detval,order,miter);
t0 = clock;
Wy = sparse(W)*y;
AI = x'*x;
b0 = AI\(x'*y);
bd = AI\(x'*Wy);
e0 = y - x*b0;
ed = Wy - x*bd;
epe0 = e0'*e0;
eped = ed'*ed;
epe0d = ed'*e0;
% step 1) do regressions
% step 2) maximize concentrated likelihood function;
options = optimset('fminbnd');
[p,liktmp,exitflag,output] = fminbnd('f_sar',rmin,rmax,options,detval,epe0,eped,epe0d,n);
time4 = etime(clock,t0);
if exitflag == 0
fprintf(1,'\n sar: convergence not obtained in %4d iterations \n',output.iterations);
end;
results.iter = output.iterations;
% step 3) find b,sige maximum likelihood estimates
results.beta = b0 - p*bd;
results.rho = p;
bhat = results.beta;
results.sige = (1/n)*(e0-p*ed)'*(e0-p*ed);
sige = results.sige;
e = (e0 - p*ed);
yhat = (speye(n) - p*W)\(x*bhat);
results.yhat = yhat;
results.resid = y - yhat;
parm = [results.beta
results.rho
results.sige];
results.lik = f2_sar(parm,y,x,W,detval);
if n <= 500
t0 = clock;
% asymptotic t-stats based on information matrix
% (page 80-81 Anselin, 1980)
B = eye(n) - p*W;
BI = inv(B); WB = W*BI;
pterm = trace(WB*WB + WB*WB');
xpx = zeros(nvar+2,nvar+2); % bhat,bhat
xpx(1:nvar,1:nvar) = (1/sige)*(x'*x); % bhat,rho
xpx(1:nvar,nvar+1) = (1/sige)*x'*W*BI*x*bhat;
xpx(nvar+1,1:nvar) = xpx(1:nvar,nvar+1)'; % rho,rho
xpx(nvar+1,nvar+1) = (1/sige)*bhat'*x'*BI'*W'*W*BI*x*bhat + pterm;
xpx(nvar+2,nvar+2) = n/(2*sige*sige); %sige,sige
xpx(nvar+1,nvar+2) = (1/sige)*trace(WB); % rho,sige
xpx(nvar+2,nvar+1) = xpx(nvar+1,nvar+2);
xpxi = invpd(xpx);
tmp = diag(abs(xpxi(1:nvar+1,1:nvar+1)));
bvec = [results.beta
results.rho];
tmps = bvec./(sqrt(tmp));
results.tstat = tmps;
results.bstd = sqrt(tmp(1:nvar,1));
results.pstd = sqrt(tmp(nvar,1));
time3 = etime(clock,t0);
else % asymptotic t-stats using numerical hessian
t0 = clock;
% just computes the diagonal
dhessn = hessian('f2_sar',parm,y,x,W,detval);
hessi = invpd(dhessn);
tvar = abs(diag(hessi));
tmp = [results.beta
results.rho];
results.tstat = tmp./sqrt(tvar(1:end-1,1));
results.bstd = sqrt(tvar(1:end-2,1));
results.pstd = sqrt(tvar(end-1,1));
time3 = etime(clock,t0);
end; % end of t-stat calculations
ym = y - mean(y); % r-squared, rbar-squared
rsqr1 = results.resid'*results.resid;
rsqr2 = ym'*ym;
results.rsqr = 1.0-rsqr1/rsqr2; % r-squared
rsqr1 = rsqr1/(n-nvar);
rsqr2 = rsqr2/(n-1.0);
% return stuff
results.meth = 'sar';
results.y = y;
results.nobs = n;
results.nvar = nvar;
results.rmax = rmax;
results.rmin = rmin;
results.lflag = ldetflag;
results.order = order;
results.miter = miter;
results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared
results.time = etime(clock,timet);
results.time1 = time1;
results.time2 = time2;
results.time3 = time3;
results.time4 = time4;
results.lndet = detval;
function llike = f_sar(rho,detval,epe0,eped,epe0d,n)
% PURPOSE: evaluates concentrated log-likelihood for the
% spatial autoregressive model using sparse matrix algorithms
% ---------------------------------------------------
% USAGE:llike = f_sar(rho,detval,epe0,eped,epe0d,n)
% where: rho = spatial autoregressive parameter
% detval = a matrix with vectorized log-determinant information
% epe0 = see below
% eped = see below
% eoe0d = see below
% n = # of obs
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -