📄 sar_gd3.m
字号:
% PURPOSE: An example of using sar_g() on a large data set
% Metropolis-Hastings sampling spatial autoregressive model
%---------------------------------------------------
% USAGE: sar_gd3 (see sar_gd for a small data set)
%---------------------------------------------------
clear all;
% NOTE a large data set with 3107 observations
% from Pace and Barry, takes around 150-250 seconds
load elect.dat; % load data on votes
y = log(elect(:,7)./elect(:,8));
x1 = log(elect(:,9)./elect(:,8));
x2 = log(elect(:,10)./elect(:,8));
x3 = log(elect(:,11)./elect(:,8));
latt = elect(:,5);
long = elect(:,6);
n = length(y); x = [ones(n,1) x1 x2 x3];
clear x1; clear x2; clear x3;
clear elect; % conserve on RAM memory
n = 3107;
[junk W junk] = xy2cont(latt,long);
vnames = strvcat('voters','const','educ','homeowners','income');
% do Gibbs sampling estimation
ndraw = 2500;
nomit = 500;
prior.novi = 1; % homoscedastic model
result1 = sar_g(y,x,W,ndraw,nomit,prior);
prt(result1,vnames);
prior2.rval = 4; % heteroscedastic model
result2 = sar_g(y,x,W,ndraw,nomit,prior2);
prt(result2,vnames);
% compare the posterior densities for rho
[h1,f1,y1] = pltdens(result1.pdraw);
[h2,f2,y2] = pltdens(result2.pdraw);
plot(y1,f1,'--r',y2,f2,'-g');
legend('Homoscedastic','heteroscedastic');
pause;
[h1,f1,y1] = pltdens(result1.yhat);
[h2,f2,y2] = pltdens(result2.yhat);
[h3,f3,y3] = pltdens(y);
plot(y1,f1,'--r',y2,f2,'-g',y3,f3,'.b');
legend('Homoscedastic','heteroscedastic','actual');
axis([-2 1 0 max(max([f1 f2 f3]))]);
pause;
tt=1:n;
plot(tt,y,'.b',tt,result1.yhat,'.r');
title('actual vs predicted homoscedastic model');
xlabel('actual');
ylabel('predicted');
pause;
plot(tt,y,'.b',tt,result2.yhat,'.r');
title('actual vs predicted heteroscdastic model');
xlabel('actual');
ylabel('predicted');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -