📄 semip_gd2.m
字号:
% PURPOSE: An example of two types of sampling for rho in the semip_g function
% Gibbs sampling spatial Probit model with individual effects
% using 1996 presidential election data set
%
%---------------------------------------------------
% USAGE: semip_gd2
%---------------------------------------------------
clear all;
load semip.mat;
vnames = strvcat('y','highs','college','grad','non-white', ...
'income','urban');
% x-matrix contains 3,110 x 6 matrix with:
% col1 = high school graduates as a percent of population
% col2 = college percent
% col3 = graduate school
% col4 = non-white
% col5 = median income
% col6 = urban
% z = 0,1 with 0 = Dole wins, 1 = Clinton wins, 3,110 counties
% W = a 48x48 spatial weight matrix (standardized)
% nregions = 48
% regionobs = a 48 x 1 vector with the # of counties in each state
% states organized alphabetically
[n k] = size(x);
ndraw = 2500;
nomit = 500;
prior.rval = 4;
prior.dflag = 1; % metropolis-hastings for rho
prior.rmin = 0;
prior.rmax = 1;
% use M-H sampling for rho
result = semip_g(z,x,W,nregions,regionobs,ndraw,nomit,prior);
prt(result,vnames);
prior.dflag = 0; % use alternative approach to sample for rho
result2 = semip_g(z,x,W,nregions,regionobs,ndraw,nomit,prior);
prt(result2,vnames);
[h1,f1,y1] = pltdens(result.pdraw);
[h2,f2,y2] = pltdens(result2.pdraw);
plot(y1,f1,'.',y1,f2,'o');
legend('Met-H','Inversion');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -