📄 semip_gc.m
字号:
function results = semip_gc(y,x,W,m,mobs,ndraw,nomit,prior)
% PURPOSE: C-MEX version of: Bayesian Probit with spatial individual effects:
% Y = (Yi, i=1,..,m) with each vector, Yi = (yij:j=1..Ni) consisting of individual
% dichotomous observations in regions i=1..m, defined by yij = Indicator(zij>0),
% where latent vector Z = (zij) is given by the linear model:
%
% Z = X*b + del*a + e with:
%
% x = n x k matrix of explanatory variables [n = sum(Ni: i=1..m)];
% del = n x m indicator matrix with del(j,i) = 1 iff indiv j is in reg i;
% a = (ai: i=1..m) a vector of random regional effects modeled by
%
% a = rho*W*a + U, U ~ N[0,sige*I_m] ; (I_m = m-square Identity matrix)
%
% and with e ~ N(0,V), V = diag(del*v) where v = (vi:i=1..m).
%
% The priors for the above parameters are of the form:
% r/vi ~ ID chi(r), r ~ Gamma(mm,kk)
% b ~ N(c,T),
% 1/sige ~ Gamma(nu,d0),
% rho ~ Uniform(1/lmin,1/lmax)
%-----------------------------------------------------------------
% USAGE: results = semip_gc(y,x,W,m,mobs,ndraw,nomit,prior)
% where: y = dependent variable vector (nobs x 1) [must be zero-one]
% x = independent variables matrix (nobs x nvar)
% W = 1st order contiguity matrix (standardized, row-sums = 1)
% m = # of regions (= m above)
% mobs = an m x 1 vector containing the # of observations in each
% region [= (Ni:i=1..m) above]
% ndraw = # of draws
% nomit = # of initial draws omitted for burn-in
% prior = a structure variable with:
% prior.beta = prior means for beta, (= c above)
% (default = 0)
% prior.bcov = prior beta covariance , (= T above)
% [default = 1e+12*I_k ]
% prior.rval = r prior hyperparameter, default=4
% prior.mm = informative Gamma(mm,kk) prior on r
% prior.kk = (default: not used)
% prior.nu = informative Gamma(nu,d0) prior on sige
% prior.d0 = default: nu=0,d0=0 (diffuse prior)
% prior.rmin = (optional) min rho used in sampling (default = 0)
% prior.rmax = (optional) max rho used in sampling (default = 1)
% prior.lflag = 0 for full lndet computation (default = 1, fastest)
% = 1 for MC approx (fast for large problems)
% = 2 for Spline approx (medium speed)
% prior.eflag = 0 for no eigenvalue calculations,
% = 1 for eigenvalue bounds on rho
% prior.order = order to use with prior.lflag = 1 option (default = 50)
% prior.iter = iters to use with prior.lflag = 1 option (default = 30)
% prior.seed = a numerical value to seed the random number generator
% (default is to use the system clock which produces
% different results on every run)
%---------------------------------------------------
% RETURNS: a structure:
% results.meth = 'semip_gc'
% results.bdraw = bhat draws (ndraw-nomit x nvar)
% results.pdraw = rho draws (ndraw-nomit x 1)
% results.adraw = a draws (ndraw-nomit x m)
% results.amean = mean of a draws (m x 1)
% results.sdraw = sige draws (ndraw-nomit x 1)
% results.vmean = mean of vi draws (m x 1)
% results.rdraw = r draws (ndraw-nomit x 1) (if m,k input)
% results.bmean = b prior means, prior.beta from input
% results.bstd = b prior std deviations sqrt(diag(prior.bcov))
% results.bflag = 1 for informative prior, 0 for diffuse
% results.r = value of hyperparameter r (if input)
% results.rsqr = R-squared
% results.nobs = # of observations
% results.mobs = mobs vector from input
% results.m = # of regions
% results.nvar = # of variables in x-matrix
% results.ndraw = # of draws
% results.nomit = # of initial draws omitted
% results.y = actual observations (nobs x 1)
% results.zmean = mean of latent z-draws (nobs x 1)
% results.yhat = mean of posterior y-predicted (nobs x 1)
% results.nu = nu prior parameter
% results.d0 = d0 prior parameter
% results.time1 = time for eigenvalue calculation
% results.time2 = time for log determinant calculation
% results.time3 = time for sampling
% results.time = total time taken
% results.rmax = 1/max eigenvalue of W (or rmax if input)
% results.rmin = 1/min eigenvalue of W (or rmin if input)
% results.eflag = 0 for no eigenvalue calculations, 1 for eigenvalues
% results.tflag = 'plevel' (default) for printing p-levels
% = 'tstat' for printing bogus t-statistics
% results.prho = prior for rho (from input)
% results.rvar = prior variance for rho (from input)
% results.pflag = flag for normal prior on rho, =0 diffuse, =1 normal prior
% results.lflag = lflag from input
% results.iter = prior.iter option from input
% results.order = prior.order option from input
% results.limit = matrix of [rho lower95,logdet approx, upper95]
% intervals for the case of lflag = 1
% results.seed = seed (if input, or zero if not)
% ----------------------------------------------------
% NOTES: see c_source/semip folder for source code semip_gcc.c
% compile with: mex semip_gcc.c matrixjpl.c randomlib.c
% If you input a continuous y-vector, no truncated draws are done
% producing spatial regression estimates with individual effects in place
% of spatial probit estimates.
% ----------------------------------------------------
% SEE ALSO: semip_gd, prt, semip_g.m, a matlab function in lieu of this C-MEX function
% ----------------------------------------------------
% REFERENCES: Tony E. Smith and James LeSage
% "A Bayesian Probit Model with Spatial Dependencies" unpublished manuscript
%
% For lndet information see: Ronald Barry and R. Kelley Pace, "A Monte Carlo Estimator
% of the Log Determinant of Large Sparse Matrices", Linear Algebra and
% its Applications", Volume 289, Number 1-3, 1999, pp. 41-54.
% and: R. Kelley Pace and Ronald P. Barry "Simulating Mixed Regressive
% Spatially autoregressive Estimators", Computational Statistics, 1998,
% Vol. 13, pp. 397-418.
%----------------------------------------------------------------
% written by: and:
% James P. LeSage, Dept of Economics Tony E. Smith
% University of Toledo Dept of Systems Engineering
% 2801 W. Bancroft St, University of Pennsylvania
% Toledo, OH 43606 Philadelphia, PA 19104
% jpl@jpl.econ.utoledo.edu tesmith@ssc.upenn.edu
% NOTE: much of the speed for large problems comes from:
% the use of methods pioneered by Pace and Barry.
% R. Kelley Pace was kind enough to provide functions
% lndetmc, and lndetint from his spatial statistics toolbox
% for which we are very grateful.
timet = clock;
time1 = 0;
time2 = 0;
time3 = 0;
% error checking on inputs
[n junk] = size(y);
results.y = y;
[n1 k] = size(x);
[n3 n4] = size(W);
if n1 ~= n
error('semip_gc: x-matrix contains wrong # of observations');
elseif n3 ~= n4
error('semip_gc: W matrix is not square');
elseif n3~= m
error('semip_gc: W matrix is not the same size as # of regions');
end;
% check that mobs vector is correct
obs_chk = sum(mobs);
if obs_chk ~= n
error('semip_gc: wrong # of observations in mobs vector');
end;
if length(mobs) ~= m
error('semip_gc: wrong size mobs vector -- should be m x 1');
end;
% set defaults
seed = 0;
seedflag = 0;
mm = 0; % default for mm
kk = 0; % default for kk (not used if mm = 0)
rval = 4; % default for r
nu = 0; % default diffuse prior for sige
d0 = 0;
sig0 = 1; % default starting values for sige
c = zeros(k,1); % diffuse prior for beta
T = eye(k)*1e+12;
bflag = 0;
p0 = 0.5; % default starting value for rho
inV0 = ones(m,1); % default starting value for inV [= inv(V)]
a0 = ones(m,1);
lflag = 1; % use Pace's fast MC approximation to lndet(I-rho*W)
eflag = 0;
rmin = 01; % use -1,1 rho interval
rmax = 1;
order = 50; iter = 30; % defaults
pflag = 0; % flag for prior on rho
if nargin == 8 % parse input values
fields = fieldnames(prior);
nf = length(fields);
for i=1:nf
if strcmp(fields{i},'rval')
rval = prior.rval;
elseif strcmp(fields{i},'m')
mm = prior.m;
kk = prior.k;
rval = gamm_rnd(1,1,mm,kk); % initial value for rval
elseif strcmp(fields{i},'beta')
c = prior.beta; bflag = 1;
elseif strcmp(fields{i},'bcov')
T = prior.bcov; bflag = 1;
elseif strcmp(fields{i},'prho')
prho = prior.prho; pflag = 1;
elseif strcmp(fields{i},'pvar')
pvar = prior.pvar; pflag = 1;
elseif strcmp(fields{i},'nu')
nu = prior.nu;
elseif strcmp(fields{i},'d0')
d0 = prior.d0;
elseif strcmp(fields{i},'rmin')
rmin = prior.rmin;
rmax = prior.rmax;
elseif strcmp(fields{i},'eflag')
eflag = prior.eflag;
elseif strcmp(fields{i},'lflag')
lflag = prior.lflag;
elseif strcmp(fields{i},'order')
order = prior.order; results.order = order;
elseif strcmp(fields{i},'iter')
iter = prior.iter; results.iter = iter;
elseif strcmp(fields{i},'seed');
seed = prior.seed;
seedflag = 1;
end;
end;
elseif nargin == 7 % we supply all defaults
else
error('Wrong # of arguments to semip_gc');
end;
results.order = order;
results.iter = iter;
% error checking on prior information inputs
[checkk,junk] = size(c);
if checkk ~= k
error('semip_gc: prior beta means are wrong');
elseif junk ~= 1
error('semip_gc: prior beta means are wrong');
end;
[checkk junk] = size(T);
if checkk ~= k
error('semip_gc: prior bcov is wrong');
elseif junk ~= k
error('semip_gc: prior bcov is wrong');
end;
if pflag == 1
if ~isscalar(prho)
error('semip_gc: prior mean for rho should be a scalar');
end;
if ~isscalar(pvar)
error('semip_gc: prior variance for rho should be a scalar');
end;
end;
if eflag == 1; % Compute eigenvalues
t0 = clock;
opt.tol = 1e-3; opt.disp = 0;
lambda = eigs(sparse(W),speye(m),1,'SR',opt);
rmin = 1/lambda;
rmax = 1;
time1 = etime(clock,t0);
end;
% do lndet calculations using 1 of 3 methods
switch lflag
case {0} % use full method, no approximations
t0 = clock;
out = lndetfull(W,rmin,rmax);
time2 = etime(clock,t0);
tt=rmin:.001:rmax; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
case{1} % use Pace and Barry, 1999 MC approximation
t0 = clock;
out = lndetmc(order,iter,W);
time2 = etime(clock,t0);
results.limit = [out.rho out.lo95 out.lndet out.up95];
tt=.001:.001:1; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
case{2} % use Pace and Barry, 1998 spline interpolation
t0 = clock;
out = lndetint(W);
time2 = etime(clock,t0);
tt=.001:.001:1; % interpolate a finer grid
outi = interp1(out.rho,out.lndet,tt','spline');
detval = [tt' outi];
otherwise
error('semip_gc: unrecognized lflag value on input');
% we should never get here
end; % end of different det calculation options
results.rmax = rmax;
results.rmin = rmin;
% ====== initializations
% compute this once to save time
W = full(W);
TI = inv(T);
TIc = TI*c;
rho = p0;
inV = inV0;
sige = sig0;
a = a0;
ngrid = length(detval(:,1));
nsave = ndraw - nomit;
%*******************************
% Start GIBBS SAMPLER
%*******************************
t0 = clock;
if seedflag ~= 0;
rseed = num2str(seed);
end;
%************************************
% OUTPUTS: bdraw,adraw,pdraw,sdraw,rdraw,vmean,amean,zmean,yhat
% INPUTS: y,x,W,ndraw,nomit,nsave,n,k,m,mobs,a,nu,d0,rval,mm,kk,detval,ngrid,TI,TIc,prho,pvar
disp('=== MCMC sampling ---');
if seedflag == 0
[bdraw,adraw,pdraw,sdraw,rdraw,vmean,amean,zmean,yhat] = semip_gcc(...
y,x,W,ndraw,nomit,nsave,n,k,m,mobs,a,nu,d0,rval,mm,kk,detval,ngrid,TI,TIc);
time3 = etime(clock,t0);
else
[bdraw,adraw,pdraw,sdraw,rdraw,vmean,amean,zmean,yhat] = semip_gcc(...
y,x,W,ndraw,nomit,nsave,n,k,m,mobs,a,nu,d0,rval,mm,kk,detval,ngrid,TI,TIc,rseed);
time3 = etime(clock,t0);
end;
time = etime(clock,timet);
% Save results
results.meth = 'semip_g';
results.bdraw = bdraw;
results.adraw = adraw;
results.pdraw = pdraw;
results.sdraw = sdraw;
results.vmean = vmean;
results.amean = amean;
results.zmean = zmean;
results.yhat = yhat;
results.bmean = c;
results.bstd = sqrt(diag(T));
results.pflag = pflag;
results.bflag = bflag;
results.eflag = eflag;
results.dflag = 0;
if mm~= 0
results.rdraw = rdraw;
end
results.nobs = n;
results.nvar = k;
results.nreg = m;
results.ndraw = ndraw;
results.nomit = nomit;
results.time1 = time1;
results.time2 = time2;
results.time3 = time3;
results.time = time;
results.nu = nu;
results.d0 = d0;
results.tflag = 'plevel';
results.lflag = lflag;
results.m = m;
results.mobs = mobs;
if mm~= 0
results.rdraw = rsave;
results.m = mm;
results.k = kk;
else
results.r = rval;
results.rdraw = 0;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -