📄 prt_semip.m
字号:
function prt_semip(results,vnames,fid)
% PURPOSE: Prints output using semip model results structures
%---------------------------------------------------
% USAGE: prt_semip(results,vnames,fid)
% Where: results = a structure returned by semip_g.m, or semip_gc.m
% vnames = an optional vector of variable names
% fid = optional file-id for printing results to a file
% (defaults to the MATLAB command window)
%---------------------------------------------------
% NOTES: e.g. vnames = strvcat('y','const','x1','x2');
% e.g. fid = fopen('ols.out','wr');
% use prt_semip(results,[],fid) to print to a file with no vnames
% --------------------------------------------------
% RETURNS: nothing, just prints the spatial regression results
% --------------------------------------------------
% SEE ALSO: prt, plt
%---------------------------------------------------
% written by:
% James P. LeSage, Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jpl@jpl.econ.utoledo.edu
if ~isstruct(results)
error('prt_semip requires structure argument');
elseif nargin == 1
nflag = 0; fid = 1;
elseif nargin == 2
fid = 1; nflag = 1;
elseif nargin == 3
nflag = 0;
[vsize junk] = size(vnames); % user may supply a blank argument
if vsize > 0
nflag = 1;
end;
else
error('Wrong # of arguments to prt_semip');
end;
nvar = results.nvar;
nobs = results.nobs;
% handling of vnames
Vname = 'Variable';
for i=1:nvar
tmp = ['variable ',num2str(i)];
Vname = strvcat(Vname,tmp);
end;
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
if (nflag == 1) % the user supplied variable names
[tst_n nsize] = size(vnames);
if tst_n ~= nvar+1
fprintf(fid,'Wrong # of variable names in prt_semip -- check vnames argument \n');
fprintf(fid,'will use generic variable names \n');
nflag = 0;
else,
Vname = 'Variable';
for i=1:nvar
Vname = strvcat(Vname,vnames(i+1,:));
end;
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
end; % end of if-else
end; % end of nflag issue
switch results.meth
case {'semip_g', 'semip_gc'} % <=================== probit regression model with individual effects
% that follow a spatial AR model
nobs = results.nobs;
nvar = results.nvar;
% handling of vnames
Vname = 'Variable';
for i=1:nvar
tmp = ['variable ',num2str(i)];
Vname = strvcat(Vname,tmp);
end;
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
if (nflag == 1) % the user supplied variable names
Vname = 'Variable';
[tst_n nsize] = size(vnames);
if tst_n ~= nvar+1
fprintf(fid,'Wrong # of variable names in prt_sem -- check vnames argument \n');
fprintf(fid,'will use generic variable names \n');
nflag = 0;
else,
for i=1:nvar
Vname = strvcat(Vname,vnames(i+1,:));
end;
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
end; % end of if-else
end; % end of nflag issue
% find posterior means
tmp1 = mean(results.bdraw);
pout = mean(results.pdraw);
bout = [tmp1'
pout];
y = results.y;
sige = mean(results.sdraw);
tmp1 = std(results.bdraw);
tmp2 = std(results.pdraw);
bstd = [tmp1'
tmp2];
if strcmp(results.tflag,'tstat')
tstat = bout./bstd;
% find t-stat marginal probabilities
tout = tdis_prb(tstat,results.nobs);
results.tstat = bout./bstd; % trick for printing below
else % find plevels
draws = [results.bdraw results.pdraw];
for i=1:results.nvar+1;
if bout(i,1) > 0
cnt = find(draws(:,i) > 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
else
cnt = find(draws(:,i) < 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
end; % end of if - else
end; % end of for loop
end;
e = y - results.yhat;
sigu = e'*e;
ym = y - mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % conventional r-squared
fprintf(fid,'\n');
fprintf(fid,'Bayesian probit model with individual spatial effects \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
%fprintf(fid,'R-squared = %9.4f \n',rsqr);
fprintf(fid,'sigma^2 = %9.4f \n',sige);
if results.rdraw == 0
fprintf(fid,'r-value = %6d \n',results.r);
else
fprintf(fid,'mean of rdraws = %9.4f \n',mean(results.rdraw));
fprintf(fid,'gam(m,k) prior = %6d,%6d \n',results.m,results.k);
end;
fprintf(fid,'Nobs, Nvars = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'ndraws,nomit = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'total time in secs = %9.4f \n',results.time);
if results.time1 ~= 0
fprintf(fid,'time for eigs = %9.4f \n',results.time1);
end;
if results.time2 ~= 0
fprintf(fid,'time for lndet = %9.4f \n',results.time2);
end;
if results.time3 ~= 0
fprintf(fid,'time for sampling = %9.4f \n',results.time3);
end;
if results.dflag == 0
fprintf(fid,'Griddy Gibbs with inversion used for rho \n');
else
fprintf(fid,'Metropolis-Hastings used for rho \n');
end;
if results.lflag == 0
fprintf(fid,'No lndet approximation used \n');
end;
% put in information regarding Pace and Barry approximations
if results.lflag == 1
fprintf(fid,'Pace and Barry, 1999 MC lndet approximation used \n');
fprintf(fid,'order for MC appr = %6d \n',results.order);
fprintf(fid,'iter for MC appr = %6d \n',results.iter);
end;
if results.lflag == 2
fprintf(fid,'Pace and Barry, 1998 spline lndet approximation used \n');
end;
fprintf(fid,'min and max lambda = %9.4f,%9.4f \n',results.rmin,results.rmax);
% only print priors if non-diffuse
if (results.bflag == 1)
% non-diffuse prior, so print it
fprintf(fid,'***************************************************************\n');
vstring = 'Variable';
bstring = 'Prior Mean';
tstring = 'Std Deviation';
tmp = [results.bmean results.bstd];
cnames = strvcat(bstring,tstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname(i+1,:));
end;
pin.fmt = '%16.6f';
pin.fid = fid;
pin.cnames = cnames;
pin.rnames = rnames;
mprint(tmp,pin);
end;
fprintf(fid,'***************************************************************\n');
fprintf(fid,' Posterior Estimates \n');
if strcmp(results.tflag,'tstat')
% now print coefficient estimates, t-statistics and probabilities
tout = norm_prb(results.tstat); % find asymptotic z (normal) probabilities
tmp = [bout results.tstat tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Asymptot t-stat'; pstring = 'z-probability';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
else % use p-levels for Bayesian results
tmp = [bout bstd tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Std Deviation'; pstring = 'p-level';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
end;
return;
% <=================== end of semip_g case
case {'semit_g'} % <=================== regression model with individual effects
% that follow a spatial AR model
nobs = results.nobs;
nvar = results.nvar;
% handling of vnames
Vname = 'Variable';
for i=1:nvar
tmp = ['variable ',num2str(i)];
Vname = strvcat(Vname,tmp);
end;
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
if (nflag == 1) % the user supplied variable names
Vname = 'Variable';
[tst_n nsize] = size(vnames);
if tst_n ~= nvar+1
fprintf(fid,'Wrong # of variable names in prt_sem -- check vnames argument \n');
fprintf(fid,'will use generic variable names \n');
nflag = 0;
else,
for i=1:nvar
Vname = strvcat(Vname,vnames(i+1,:));
end;
% add spatial rho parameter name
Vname = strvcat(Vname,'rho');
end; % end of if-else
end; % end of nflag issue
% find posterior means
tmp1 = mean(results.bdraw);
pout = mean(results.pdraw);
bout = [tmp1'
pout];
y = results.y;
sige = mean(results.sdraw);
tmp1 = std(results.bdraw);
tmp2 = std(results.pdraw);
bstd = [tmp1'
tmp2];
if strcmp(results.tflag,'tstat')
tstat = bout./bstd;
% find t-stat marginal probabilities
tout = tdis_prb(tstat,results.nobs);
results.tstat = bout./bstd; % trick for printing below
else % find plevels
draws = [results.bdraw results.pdraw];
for i=1:results.nvar+1;
if bout(i,1) > 0
cnt = find(draws(:,i) > 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
else
cnt = find(draws(:,i) < 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
end; % end of if - else
end; % end of for loop
end;
e = y - results.yhat;
sigu = e'*e;
ym = y - mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % conventional r-squared
fprintf(fid,'\n');
fprintf(fid,'Bayesian tobit model with individual spatial effects \n');
if (nflag == 1)
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
%fprintf(fid,'R-squared = %9.4f \n',rsqr);
fprintf(fid,'sigma^2 = %9.4f \n',sige);
if results.rdraw == 0
fprintf(fid,'r-value = %6d \n',results.r);
else
fprintf(fid,'mean of rdraws = %9.4f \n',mean(results.rdraw));
fprintf(fid,'gam(m,k) prior = %6d,%6d \n',results.m,results.k);
end;
fprintf(fid,'Nobs, Nvars = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'ndraws,nomit = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'total time in secs = %9.4f \n',results.time);
if results.time1 ~= 0
fprintf(fid,'time for eigs = %9.4f \n',results.time1);
end;
if results.time2 ~= 0
fprintf(fid,'time for lndet = %9.4f \n',results.time2);
end;
if results.time3 ~= 0
fprintf(fid,'time for sampling = %9.4f \n',results.time3);
end;
if results.lflag == 0
fprintf(fid,'No lndet approximation used \n');
end;
% put in information regarding Pace and Barry approximations
if results.lflag == 1
fprintf(fid,'Pace and Barry, 1999 MC lndet approximation used \n');
fprintf(fid,'order for MC appr = %6d \n',results.order);
fprintf(fid,'iter for MC appr = %6d \n',results.iter);
end;
if results.lflag == 2
fprintf(fid,'Pace and Barry, 1998 spline lndet approximation used \n');
end;
fprintf(fid,'min and max lambda = %9.4f,%9.4f \n',results.rmin,results.rmax);
fprintf(fid,'***************************************************************\n');
vstring = 'Variable';
bstring = 'Prior Mean';
tstring = 'Std Deviation';
tmp = [results.bmean results.bstd];
cnames = strvcat(bstring,tstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname(i+1,:));
end;
pin.fmt = '%16.6f';
pin.fid = fid;
pin.cnames = cnames;
pin.rnames = rnames;
mprint(tmp,pin);
fprintf(fid,'***************************************************************\n');
fprintf(fid,' Posterior Estimates \n');
if strcmp(results.tflag,'tstat')
% now print coefficient estimates, t-statistics and probabilities
tout = norm_prb(results.tstat); % find asymptotic z (normal) probabilities
tmp = [bout results.tstat tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Asymptot t-stat'; pstring = 'z-probability';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
else % use p-levels for Bayesian results
tmp = [bout bstd tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Std Deviation'; pstring = 'p-level';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
end;
return;
% <=================== end of semit_g case
otherwise
error('results structure not known by prt_semip function');
end;
% now print coefficient estimates, t-statistics and probabilities
tout = norm_prb(results.tstat); % find asymptotic z (normal) probabilities
tmp = [bout results.tstat tout]; % matrix to be printed
% column labels for printing results
bstring = 'Coefficient'; tstring = 'Asymptot t-stat'; pstring = 'z-probability';
cnames = strvcat(bstring,tstring,pstring);
in.cnames = cnames;
in.rnames = Vname;
in.fmt = '%16.6f';
in.fid = fid;
mprint(tmp,in);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -