📄 walds.m
字号:
function result = walds(y,x,W);% PURPOSE: Wald statistic for spatial autocorrelation in residuals% of a regression model% ---------------------------------------------------% USAGE: result = walds(y,x,W)% where: y = dependent variable vector% x = independent variables matrix% W = contiguity matrix (standardized)% ---------------------------------------------------% RETURNS: a structure variable% result.meth = 'walds'% result.wald = Wald statistic% result.prob = marginal probability% result.chi1 = 6.635 (chi-squared 1 dof at 99% level)% result.nobs = # of observations% result.nvar = # of variables% ---------------------------------------------------% NOTE: (wald > 6.635, => small prob,% => reject HO: of no spatial correlation% ---------------------------------------------------% See also: lmerror, lratios, moran% ---------------------------------------------------% REFERENCES: Anselin (1988), pages 103-104.% ---------------------------------------------------% written by:% James P. LeSage, Dept of Economics% University of Toledo% 2801 W. Bancroft St,% Toledo, OH 43606% jpl@jpl.econ.utoledo.eduif nargin ~= 3error('Wrong # of arguments to walds');end;% get ML estimate of lambdares = sem(y,x,W);lam = res.rho;[n k] = size(x);spparms('tight'); z = speye(n) - 0.1*sparse(W);p = colmmd(z);z = speye(n) - lam*sparse(W);zi = inv(z);t1 = trace(W.*z);t2 = trace(W*z)^2;t3 = trace((W*z)'*(W*z));walds = (lam^2) *(t2 + t3 - (1/n)*(t1*t1));prob = 1-chis_prb(walds,1);result.meth = 'walds';result.wald = walds;result.prob = prob;result.chi1 = 6.635;result.nobs = n;result.nvar = k;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -