📄 sar_gmm.m
字号:
function results=sar_gmm(y,x,W)
% PURPOSE: computes Generalized Moments Estimates for Spatial Autoregressive Model
% y = rho*W*y + XB + e
% ---------------------------------------------------
% USAGE: results = sar_gmm(y,x,W)
% where: y = dependent variable vector
% x = independent variables matrix
% (with intercept vector in the 1st column of x)
% W = sparse contiguity matrix (standardized)
% ---------------------------------------------------
% RETURNS: a structure
% results.meth = 'sar_gmm'
% results.beta = bhat
% results.tstat = asymp t-stats
% results.rho = rho
% results.rhotstat = t-stat of rho (under normality assumption)
% results.GMsige = GM-estimated variance
% results.yhat = yhat = B*x*bhat, B=inv(I - rho*W)
% results.resid = residuals, y - yhat
% results.sige = sige = e'*e/n, e = y - yhat
% results.rsqr = rsquared
% results.rbar = rbar-squared
% results.se = Standard errors from EGLS
% results.nobs = number of observations
% results.nvar = number of variables
% results.time = total time taken
% ---------------------------------------------------
% % SEE ALSO: prt(results), sar, sar_g
% ---------------------------------------------------
% REFERENCES: Luc Anselin Spatial Econometrics (1988) pages 182-183.
% Kelejian, H., and Prucha, I.R. (1998). A Generalized Spatial Two-Stage
% Least Squares Procedure for Estimating a Spatial Autoregressive
% Model with Autoregressive Disturbances. Journal of Real
% Estate and Finance Economics, 17, 99-121.
% ---------------------------------------------------
% written by: Jim LeSage
% Adapted from Shawn Bucholtz code for the SEM model case
timet = clock; % start the clock for overall timing
% error checking on inputs
xsum = sum(x);
[n,k] = size(x);
ind = find(xsum == n);
iflag = 0;
if length(ind) > 0 % we have an intercept
if ind ~= 1
warning('intercept must be in 1st column of the x-matrix');
end;
iflag = 1;
end;
results.meth = 'sar_gmm';
time1 = 0;
time2 = 0;
%Estimated OLS to get a vector of residuals
[n, nvar]=size(x);
results.nobs=n;
results.nvar=nvar;
if iflag == 1
Wy = sparse(W)*y;
Wx = sparse(W)*x(:,2:end);
z = [x Wx W*Wx];
o1 = tsls(y,Wy,x,z);
rho = o1.beta(1,1);
bhat = o1.beta(2:end,1);
rhotstat = o1.tstat(1,1);
btstat = o1.tstat(2:end,1);
sige = (o1.resid'*o1.resid)/n;
elseif iflag == 0
Wy = sparse(W)*y;
Wx = sparse(W)*x;
z = [x Wx W*Wx];
o1 = tsls(y,Wy,x,z);
rho = o1.beta(1,1);
bhat = o1.beta(2:end,1);
rhotstat = o1.tstat(1,1);
btstat = o1.tstat(2:end,1);
sige = (o1.resid'*o1.resid)/n;
end;
results.rho = rho;
results.beta = bhat;
results.sige = sige;
results.tstat = btstat;
results.rhotstat = rhotstat;
sigu = results.sige*n;
ym = y - mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
results.rsqr = 1.0 - rsqr1/rsqr2; % r-squared
rsqr1 = rsqr1/(n-nvar);
rsqr2 = rsqr2/(n-1.0);
if rsqr2 ~= 0
results.rbar = 1 - (rsqr1/rsqr2); % rbar-squared
else
results.rbar = results.rsqr;
end;
time2 = etime(clock,timet);
results.time = time2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -