📄 sem_gmmd4.m
字号:
% PURPOSE: A Monte Carlo example of using sem_gmm
% GM estimation of the spatial error model
% in a Monte Carlo experiment
%---------------------------------------------------
% USAGE: sem_gmmd4 (see also sem_gmmd2 for a large data set)
%---------------------------------------------------
clear all;
% W-matrix from Anselin's neigbhorhood crime data set
load anselin.dat;
xc = anselin(:,4);
yc = anselin(:,5);
% crate standardized 1st-order spatial weight matrix
[j1 W j2] = xy2cont(xc,yc);
[n junk] = size(W);
IN = eye(n);
rho = 0.8; % true value of rho
sige = 5;
k = 3;
x = randn(n,k);
beta = zeros(k,1);
beta(1,1) = 1.0;
beta(2,1) = -1.0;
beta(3,1) = 1.0;
niter = 100;
bout = zeros(niter,k); % storage for results
pout = zeros(niter,1);
sout = zeros(niter,1);
rout = zeros(niter,1);
tic;
for iter=1:niter;
u = (IN - rho*W)\(randn(n,1)*sqrt(sige));
y = x*beta + u;
results1 = sem_gmm(y,x,W);
bout(iter,1:k) = results1.beta';
sout(iter,1) = results1.sige;
pout(iter,1) = results1.lambda;
rout(iter,1) = results1.rsqr;
end;
toc;
% pretty print out the results
in.cnames = strvcat('b1','b2','b3');
in.rnames = strvcat('Statistics','truth','means','median','min','max');
in.width = 1000;
bprint = [beta'
mean(bout)
median(bout)
min(bout)
max(bout)];
mprint(bprint,in);
pprint = [rho sige 0
mean(pout) mean(sout) mean(rout)
median(pout) median(sout) median(rout)
min(pout) min(sout) min(rout)
max(pout) max(sout) max(rout)];
in2.cnames = strvcat('lambda','sigma','R-squared');
in2.rnames = strvcat('Statistics','truth','means','median','min','max');
in2.width = 1000;
mprint(pprint,in2);
ind = find(pout > 1);
plot(sort(pout),'.');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -