📄 sar_gmmd3.m
字号:
% PURPOSE: An example of using sar_gmm on a simulated large data set
% GM estimation of the spatial autoregressive model
%---------------------------------------------------
% USAGE: sar_gmmd3 (see sar_gmmd for a small data set)
%---------------------------------------------------
clear all;
% NOTE a large data set with 3107 observations
% from Pace and Barry, takes around 150-250 seconds
load elect.dat; % load data on votes
latt = elect(:,5);
long = elect(:,6);
n = length(latt);
k = 4;
x = randn(n,k);
clear elect; % conserve on RAM memory
[j,W,j] = xy2cont(latt,long); % contiguity-based spatial Weight matrix
rho = 0.7;
beta = ones(k,1);
sige = 0.5;
B = speye(n) - rho*W;
y = B\(x*beta) + B\(randn(n,1)*sqrt(sige));
% use defaults including lndet approximation
result = sar(y,x,W); % maximum likelihood estimates
prt(result);
result2 = sar_gmm(y,x,W);
prt_gmm(result2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -