📄 sac_gmmd2.m
字号:
% PURPOSE: An example of using sac_gmm on a large data set
% GM estimation of the general spatial model
%---------------------------------------------------
% USAGE: sac_gmmd2 (see sac_gmmd for a small data set)
%---------------------------------------------------
clear all;
% NOTE a large data set with 3107 observations
% from Pace and Barry, takes around 150-250 seconds
load elect.dat; % load data on votes
y = log(elect(:,7)./elect(:,8)); % convert to proportions
x1 = log(elect(:,9)./elect(:,8)); % of population
x2 = log(elect(:,10)./elect(:,8));
x3 = log(elect(:,11)./elect(:,8));
latt = elect(:,5);
long = elect(:,6);
n = length(y);
x = [ones(n,1) x1 x2 x3];
clear x1; clear x2; clear x3;
clear elect; % conserve on RAM memory
[j,W,j] = xy2cont(latt,long); % contiguity-based spatial Weight matrix
W2 = make_nnw(latt,long,1); % nearest neighbor-based weight matrix
vnames = strvcat('voters','const','educ','homeowners','income');
% use defaults including lndet approximation
result = sac(y,x,W,W2); % maximum likelihood estimates
prt(result,vnames);
options.iter = 1;
result2 = sac_gmm(y,x,W,W2,options);
prt_gmm(result2,vnames);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -