📄 bgwr_d2.m
字号:
% PURPOSE: An example of using bgwr()
% Geographically weighted regression model
% (on a fairly large data set)
%---------------------------------------------------
% USAGE: bgwr_d2
%---------------------------------------------------
clear all;
load boston.dat; % Harrison-Rubinfeld data
[n k] = size(boston);
y = boston(:,k-2); % median house values
latt = boston(:,k-1); % lattitude coordinates
long = boston(:,k); % longitude coordinates
x = [ones(n,1) boston(:,1:k-3)]; % other variables
vnames = strvcat('hprice','crime','zoning','industry','charlesr', ...
'noxsq','rooms2','houseage','distance','access','taxrate', ...
'pupil/teacher','blackpop','lowclass');
ys = studentize(log(y)); xs = studentize(x(:,2:end));
clear boston;
clear y;
clear x;
% NOTE: This baby takes 15 minutes on a fast computer.
% If you have a slow computer forget it.
ndraw = 550; nomit = 50;
prior.ptype = 'distance'; % spatial parameter smoothing prior
prior.rval = 4; % robustness prior for outliers
result = bgwr(ys,xs,latt,long,ndraw,nomit,prior);
prt(result,vnames);
plt(result,vnames);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -